請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63820完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳水田(Shui-Tein Chen) | |
| dc.contributor.author | Zhi-Rong Wu | en |
| dc.contributor.author | 吳致榕 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:20:00Z | - |
| dc.date.available | 2012-08-19 | |
| dc.date.copyright | 2012-08-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-17 | |
| dc.identifier.citation | References
1. Jemal A, Center MM, Desantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev (2010) 19:1893-907 2. Raz DJ, He B, Rosell R, Jablons DM. Bronchioloalveolar carcinoma: a review. Clinical Lung Cancer (2006) 7(5): 313–322 3. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, CA Cancer J Clin. (2009) 59(4):225–249 4. D.R. Youlden, S.M. Cramb, P.D. Baade, The international epidemiology of lung cancer – geographical distribution and secular trends, Journal of Thoracic Oncology (2008) 819–831 5. R. Apweiler, H. Hermjakob, N. Sharon, On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database, BBA Gen. Subj. (1999) 1473 4–8 6. Bause, E. Structural requirements of N-glycosylation of proteins: Studies with proline peptides as conformational probes, Biochem J (1983) 209, 331-336 7. Schwarz F, Aebi M. Mechanisms and principles of N-linked protein glycosylation, Curr Opin Struct Biol (2011) 21(5):576-82 8. Kornfeld, R. and Kornfeld, S. Comparative aspects of glycoprotein structure, Annu Rev Biochem (1976) 45, 217-237 9. Hubbard, S. C. and Ivatt, R. J. Synthesis and processing of asparagines-linked oligosaccharides, Annu Rev Biochem (1981) 50,555-583 10. Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M. Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press (2009) Cold Spring Harbor, New York 11. Hofsteenge J, Muller DR, de Beer T, Loffler A, Richter WJ, Vliegenthart JFG. New type of linkage between a catbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us. Biochemistry (1994) 33:13524 12. PA Haynes. Phosphoglycosylation: A new structural class of glycosylation? Glycobiology (1998) 8(1): 1-5 13. Tarentino, A. L., Gomez, C. M., and Plummer, T. H., Deglycosylation of asparagines-linked glycans by peptide:N-glycosidase F. Biochemistry (1985) 24, 4665-4671 14. Freeze, H. H., and Varki, A. Endo-glycosidase F and peptide N-glycosidase F release the great majority of total cellular N-linked oligosaccharides: use in demonstrating that sylfated N-linked oligosaccharide are frequently found in cultured cells. Biochem Biophys Res Commun (1986) 140, 967-973 15. Jacques, P., Severine, M., Anne, C., Jezabel, R., Beatrice, M., ABH and lewis histo-blood group antigens in cancer. APMIS (2001) 109:9-26 16. Daniel J. Becker and John B. Lowe, Fucose: biosynthesis and biological function in mammals. Glycobiology (2003) 13,7 41-53 17. Kelly, R.J., Rouquier, S., Giorgi, D., Lennon, G.G., and Lowe, J.B. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2) fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non- secretor phenotype. J. Biol. Chem.(1995) 270, 4640-4649 18. Larsen, R.D., Ernst, L.K., Nair, R.P. and Lowe, J.B. Molecular cloning, sequence, and expression of a human GDP-L-fucose:beta-D- galactoside 2-alpha-L- fucosyltransferase cDNA that can form the H blood group antigen. Proc. Natl Acad. Sci. USA (1990) 87, 6674-6678 19. Kaneko, M., Kudo, T., Iwasaki, H., Ikehara, Y., Nishihara, S., Nakagawa, S., Sasaki, K., Shiina, T., Inoko, H., Saitou, N., and Narimatsu, H. Alpha1,3- fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc-TIX. FEBS Lett. (1999) 452, 237-242 20. Natsuka, S. and Lowe, J.B. Enzymes involved in mammalian oligosaccharide biosynthesis. Curr. Opin. Struct. Biol. (1994) 4, 683-691 21. Miyoshi, E., Noda, K., Yamaguchi, Y., Inoue, S., Ikeda, Y., Wang, W., Ko, J.H., Uozumi, N., Li, W., and Taniguchi, N. The alpha1-6- fucosyltransferase gene and its biological significance. Biochim. Biophys. Acta, (1999) 1473, 9-20 22. Francois Schweisguth, Regulation of Notch signaling activity. Current Biology (2004) 14, 129-138 23. K. Ohtsubo, J.D. Marth, Glycosylation in cellular mechanisms of health and disease, Cell (2006) 126, 855–867 24. A. Cazet, S. Julien, M. Bobowski, M.-A. Krzewinski-Recchi, A. Harduin-Lepers, S. Groux-Degroote, P. Delannoy, Consequences of the expression of sialylated antigens in breast cancer, Carbohydr. Res. (2010) 345, 1377–1383 25. S. Rachagani, M.P. Torres, N. Moniaux, S.K. Batra, Current status of mucins in the diagnosis and therapy of cancer, Biofactors (2009) 35, 509–527 26. D.H. Dube, C.R. Bertozzi, Glycans in cancer and inflammation potential for therapeutics and diagnostics, Nat. Rev. Drug Discov. (2005) 4, 477–488 27. Itzkowitz, S. Carbohydrate changes in colon carcinoma, APMIS suppl (1992) 27, 173-180 28. Lopez-Ferrer, A., Barranco, C., and de Bolos, C. Differences in the O-glycosylation patterns between lung squamous cell carcinoma and adenocarcinoma, Am J Clin Pathol (2002) 118, 749-755 29. Corlien A, A., Juan J, V., Eirikur Saeland, Yvette van Kooyk. Recognition of tumor glycans by antigen-presenting cells. Current opinion in immunology (2006) 18:105-111 30. LaMont JT, Isselbacher KJ, Alterations in glycosyltransferase activity in human colon cancer. Journal of the national cancer institute (1975) 54(1):53-56 31. Lowe JB, Stoolman LM, Nair RP, Larsen RD, Berhend TL and Marks RM ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell (1990) 63: 475-484 32. Waiz G, Aruffo A, Kolanus W, Bevilacqua M and Seed B, Recognition by ELAM-1 of the sialyl-Le X determinant on myeloid and tumor cells. Science (1990) 250:1132-1135 33. Berg EL, Robinson MK, Mansson O, Butcher EC and Magnani J, A carbohydrate domain common to both sialyl Lewisa and sialyl Lewisx is recognized by the endothelial cell leukocyte adhesion molecule ELAM- 1. J Biol Chem (1991) 266: 14869-14872 34. Takada A, Ohmori K, Takahashi N, Tuyuoka K, Yago K, Zenita K, Hasegawa A and Kannagi R, Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis A. Biochem Biophys Res Commun (1991) 179: 713-719 35. Hakomori,S. and Kannagi,R. Glycosphingolipids as tumor-associated and differentiation markers. J. Natl. Cancer Inst. (1983) 71, 231–251 36. Jun-ichi Ogawa, Hiroshi Inoue and Shirosaku Koide, Expression of alpha-1,3-fucosyltransferase type IV and VII genes is related to poor prognosis in lung cancer. Cancer Research (1996) 56:325-329 37. Kazuhiro Yago, Koichi Zenita, Harumi Ginya, et al. Expression of alpha-1,3- fucosyltransferase which synthesize sialyl Lex and sialyl Lea, the carbohydrate ligands for E- and P-selectins, in human malignant cell lines. Cancer Research (1993) 53:5559-5565 38. Takayuki Asao, Shin Yazawa, Yukio Nagamachi, et al. Serum alpha-1,3- fucosyltransferase, carcinoembryonic antigen, and sialyl lewis X antigen levels in lung cancer. Cancer (1989) 64:2541-2545 39. Wang X, et al. Core fucosylation regulates epidermal growth factor receptormediated intracellular signaling. J Biol Chem (2006) 281:2572–2577. 40. Li WZ, et al. Down-regulation of trypsinogen expression is associated with growth retardation in alpha 1,6-fucosyltransferase-deficient mice: Attenuation of proteinase-activated receptor 2 activity. Glycobiology (2006) 16:1007–1019 41. M. R. Wilkins, J. C. Sanchez, A. A. Gooley et al., Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it , Biotechnology and Genetic Engineering Reviews (1996) 13, 41–50 42. Cummings, R. D., Kornfeld, S., Fractionation of asparagines-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J. Biol. Chem. (1982) 257, 11235–11240 43. Hirabayashi, J., Lectin-based structural glycomics: glycoproteomics and glycan profiling. Glycoconj. J. (2004) 21, 35–40 44. Sharon, N., Lis, H., Lectins as cell recognition molecules. Science (1989) 246, 227–234 45. Bundy, J. L., Fenselau, C., Lectin and carbohydrate affinity capture surfaces for mass spectrometric analysis of microorganisms. Anal. Chem. (2001) 73, 751–757 46. Zhang, H., Li, X. J., Martin, D. B., Aebersold, R., Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. (2003) 21, 660–666 47. Tian, Y., Zhou, Y., Elliott, S., Aebersold, R., Zhang, H., Solidphase extraction of N-linked glycopeptides. Nat. Protoc. (2007) 2, 334–339 48. Tian, Y., Kelly-Spratt, K. S., Kemp, C. J., Zhang, H., Identification of glycoproteins from mouse skin tumors and plasma. Clin. Proteom. (2008) 4, 117-136 49. Xin, L., Li, M., Jianjun, L., Recent developments in the enrichment of glycopeptides for glycoproteomics. Anal. Lett. (2008) 41, 10 50. Wuhrer, M., Catalina, M. I., Deelder, A. M., Hokke, C. H., Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. (2007) 849, 115–128 51. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science (1991) 251:802–4 52. Naldini L, Vigna E, Narsimhan RP, et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene (1991) 6:501–4 53. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol (2003) 4:915–25 54. Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumorstromal interactions. Int J Cancer (2006) 119:477–83 55. S. Agarwal, C. Zerillo, J Kolmakova, et al. Association of constitutively activated hepatocyte growth factor receptor (Met) with resistance to a dual EGFR/Her2 inhibitor in non-small-cell lung cancer cells. British Journal of Cancer (2009) 100, 941–949. 56. Seiji Yano, Wei Wang, Qi Li, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor activating mutations. Cancer Res (2008) 68:9479-9487. 57. Sutherland DR, Yeo E, Ryan A, Mills GB, Bailey D, Baker MA. Identification of a cell-surface antigen associated with activated T lymphoblasts and activated platelets. Blood (1991) 77: 84–93 58. Haregewoin A, Solomon K, Hom RC et al. Cellular expression of a GPI-linked T cell activation protein. Cell Immunol (1994) 156:357-70 59. K.W. Finnson, B.Y. Tam, K. Liu, A. Marcoux, P. Lepage, S. Roy, A.A. Bizet, A. Philip, Identification of CD109 as part of the TGF-β receptor system in human keratinocytes, FASEB J. (2006) 1525–1527 60. M. Hasegawa, S. Hagiwara, T. Sato, M. Jijiwa, Y. Murakumo, M. Maeda, S. Moritani, S. Ichihara, M. Takahashi, CD109, a new marker for myoepithelial cells of mammary, salivary, and lacrimal glands and prostate basal cells, Pathol. Int. (2007) 245–250 61. S. Hagiwara, Y. Murakumo, T. Sato, T. Shigetomi, K. Mitsudo, I. Tohnai, M. Ueda, M. Takahashi, Up-regulation of CD109 expression is associated with carcinogenesis of the squamous epithelium of the oral cavity, Cancer Sci. (2008) 1916–1923 62. M. Hashimoto, M. Ichihara, T. Watanabe, K. Kawai, K. Koshikawa, N. Yuasa, T. Takahashi, Y. Yatabe, Y. Murakumo, J.M. Zhang, Y. Nimura, M. Takahashi, Expression of CD109 in human cancer, Oncogene (2004) 3716–3720 63. T. Sato, Y. Murakumo, S. Hagiwara, M. Jijiwa, C. Suzuki, Y. Yatabe, M. Takahashi, High-level expression of CD109 is frequently detected in lung squamous cell carcinomas, Pathol. Int. (2007) 719–724 64. K.J. Gordon, G.C. Blobe, Role of TGF-β superfamily signaling pathways in human disease, Biochim. Biophys. Acta: Mol. Basis Dis.(2008) 197–228 65. B. Schmierer, C.S. Hill, TGF-β-SMAD signal transduction: molecular specificity and functional flexibility, Nat. Rev. Mol. Cell Biol. (2007) 970–982 66. A. Kuno, N. Uchiyama, S. Koseki-Kuno, Y. Ebe, S. Takashima, M. Yamada and J. Hirabayashi, Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling, Nat. Methods (2005) 2, 851–856 67. D. K.Mandal and C. F. Brewer, Biochemistry, Differences in the binding affinities of dimeric concanavalin A and tetrameric concanavalin A with large oligomannose-type glycopeptides, Biochemistry (1993), 32, 5116–5120 68. M. Kullolli, W. S. Hancock and M. Hincapie, J. Preparation of a high-performance multi-lectin affinity chromatography (HP-M-LAC) adsorbent for the analysis of human plasma glycoprotein, Sep. Sci. (2008) 31, 2733-2739 69. H. Zhang, X. J. Li, D. B. Martin and R. Aebersold, Identification and quantification of N-linked glycoproteins using hydrazid chemistry, stable isotope labeling and mass spectrometry, Nat. Biotechnol (2003) 21, 660-666. 70. Y. Zhou, R. Aebersold and H. Zhang, Isolation of N-linked glycopeptides from plasma, anal. chem. (2007) 79, 5826-5837 71. Salomon DS, Bradt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Critical Rev Oncol/Hematol (1995) 19, 183–232 72. Ying-Chin Liu, Hsin-Yung Yen, Chien-Yu Chen, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. PNAS (2011) 108, 11332-11337. 73. Ma PC, Maulik G, Christensen J, et al. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev (2003) 22: 309–325 74. Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett (2005) 225, 1-26 75. K.C. Kirkbride, B.N. Ray, G.C. Blobe, Cell-surface co-receptors: emerging roles imerging roles in signaling and human disease, Trends Biochem. Sci. (2005) 611–621 76. Kanoelani T. P., Lara K. M., Deciphering the glycocode: the complexity and analytical challenge of glycomics. Current opinion in chemical biology (2007) 11, 300-305 77. Kukowska J. F., Larsen R. D.,Nair R. P., Lowe J. B., A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the lewis blood group alpha (1, 3/1, 4) fucosyltransferase. Genes Dev. (1990) 4, 1288–1303. 78. Weston, B. W., Nair, R. P., Larsen, R. D., and Lowe, J. B. Molecular cloning of a fourth member of a human alpha (1,3)fucosyltransferase gene family. Multiple homologous sequences that determine expression of the Lewis x, sialyl, Lewis x, and difucosyl sialyl Lewis x epitopes. J. Biol. Chem (1992) 267, 4152–4160 79. Mollicone, R., Gibaud, A., Francois, A., Ratcliffe, M., and Oriol, R. Acceptor specificity and tissue distribution of three human a-3-fucosyltransferases. Eur. J. Biol. (1990) 191, 169–176 80. Charles F. Goochee, Thomas Monica, Environmental effects on protein glycosylation. Nature biotechnology (1990) 8, 421-427 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63820 | - |
| dc.description.abstract | 蛋白質醣修飾的改變在癌症進程中扮演重要的角色,包括細胞增生,細胞侵犯,細胞轉移…等。我們利用超量表現第四型岩藻醣轉酶(fucosyltransferase IV, FucT4)的肺癌細胞株(A549-FucT4)及其對照組細胞株(A549-Mock)作為實驗的模式細胞,以探討第四型岩藻醣轉酶對於細胞的影響。根據先前研究結果指出,第四型岩藻醣轉酶大量表現使得A549-FucT4細胞株在轉移盤移行實驗(transwell migration assay)、細胞貼附實驗(adhesion assay)、明膠酶譜實驗(zymography)和免疫缺陷型小鼠(SCID mice)體中增殖實驗中皆發現較A549-Mock細胞株表現更惡性。本研究中利用兩種不同方式的嗜醣蛋白親和純化法(lectin affinity enrichment)分離出許多具有岩藻醣修飾之醣蛋白,經由液相層析串連電灑游離飛行式質譜儀(LC/ESI-TOF-MS)鑑定醣蛋白身分。根據比對A549-FucT4及A549-Mock細胞株中的醣蛋白,找出14個具有差異的岩藻醣修飾之蛋白。經過綜合生物分子分析軟體(IPA)運算之後發現這14個醣蛋白分別參與細胞增生,細胞貼附,細胞移動,細胞凋亡癌症相關功能。另外在實驗中我們發現A549-FucT4細胞株的生長速度比A549-Mock細胞株快。因此藉由醣蛋白質體學的實驗結果選出參與細胞增生的醣蛋白HGFR及CD109。結果指出,在不同濃度HGF刺激下或經過不同時間後,A549-FucT4細胞株的HGFR磷酸化程度均小於A549-Mock細胞株。但利用TGF-beta 1 處理細胞後,下游訊息smad3蛋白的磷酸化並無顯著差異。實驗結果讓我們瞭解到第四型岩藻醣轉酶大量表現會對癌症進程中的特定蛋白造成功能上的影響。 | zh_TW |
| dc.description.abstract | Protein glycosylation alterations play an important role in cancer progression, including cell proliferation, cell invasion, and cell metastasis. We use A549-FucT4 cells, which over-expressed fucosyltransferase IV, and A549-Mock cell as a control cell line, as a research model to study the influence of fucosylation in cell biology. Our previous data showed that A549-FucT4 is more malignant than A549-Mock based on the transwell migration assay, adhesion assay, zymography assay, and proliferation of cancer cell lines in SCID mice. We also found that the proliferation rate of A549-FucT4 cells are more rapid than A549-Mock cells. In our study, we used two methods of lectin affinity glycoprotein enrichment to enrich fucosylated proteins, and identified their identities through the LC/ESI-TOF-MS. In comparison to the glycoproteins identified in A549-Mock cells, there were 14 distinctive glycoproteins identified solely in A549-FucT4. Using Ingenuity Pathway Analysis software, we found that these 14 glycoproteins are involved in cell migration, cell proliferation, cell movement, and cell apoptosis. We chose HGFR and CD109 for further study based on our glycoproteomic data. The result indicated that A549-FucT4 cells have less HGFR phosphorylation levels in comparison with A549-Mock cells after treatment with HGF in different doses and different incubation times. But there was no obvious difference in smad3 phosphorylation after TGF-beta 1 treatment between the two cell. We think fucosyltransferase IV overexpression may affect particular proteins which take parts in cancer progression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:20:00Z (GMT). No. of bitstreams: 1 ntu-101-R99b46031-1.pdf: 1032615 bytes, checksum: 766ba97791c5dd68396cc38cea152ceb (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
中文摘要 i Abstract ii List of abbreviations iii CHAPTER 1. INTRODUCTION 1 1.1. Lung cancer 1 1.2. Glycosylation 2 1.3. Fucosylation 3 1.4. Glycosylation and cancer 5 1.5. Fucosyltransferase and cancer 6 1.6. Glycoproteomics 7 1.7. The hepatocyte growth factor receptor 8 1.8. CD109 9 1.9. Purpose of the study 10 CHAPTER 2. MATERIALS AND METHODS 12 2.1. Cell lines and cell culture 12 2.2. Total cell protein lysate 12 2.3. Bradford assay 13 2.4. BrdU ELISA assay 13 2.5. Lectin blot 14 2.6. Western blot 15 2.7. AAL affinity chromatography 16 2.8. Streptavidin-particles & biotinylated-AAL glycoproteins enrichment 16 2.9. In-solution digestion 17 2.10. Liquid-chromatography electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) 18 CHAPTER 3. RESULTS 19 3.1. Confirm the level of alpha-(1, 3/1, 4) linked fucosylation in A549-FucT4 and A549-Mock 19 3.2. Confirming the fucosylated terminal glycan structure difference between A549-FucT4 and A549-Mock 21 3.3. The use of two glycoprotein enrichments for further proteins identification by LC/ESI-MS/MS 23 3.3.1. AAL affinity chromatography enrichment 23 3.3.2. Streptavidin-particles & biotinylated-AAL enrichment 23 3.4. LC-ESI-MS/MS analysis to identify proteins extracted from the glycoproteins enrichment phase 25 3.4.1. Mascot protein analysis identified by AAL affinity chromatography enrichment 25 3.4.2. Mascot analysis proteins identified by streptavidin-particles & biotinylated-AAL enrichment 26 3.5. Comparison of the two glycoproteins-enrichment methods 28 3.6. A distinctive group of 14 glycoproteins identified in A549-FucT4 cells 29 3.7. IPA analysis of 14 glycoproteins in A549-FucT4 30 3.8. Using glycoproteomic data to elucidate the glycoproteins involved in cell proliferation 31 3.8.1. A549-FucT4 and A549-Mock cells proliferate differently 31 3.8.2. Cell proliferation-related glycoproteins 32 3.9. Role of fucosylation on hepatocyte growth factor receptor (MET) activation 33 3.9.1. Fucosylation of HGFR in A549-FucT4 and A549-Mock cells 33 3.9.2. Phosphorylation of Met tyrosine kinase in HGF treatment 34 3.10. Role of fucosylation on CD109 for TGF-beta signaling pathway activation 36 3.10.1. Fucosylation of CD109 in A549-FucT4 and A549-Mock cells 36 3.10.2. Phosphorylation of Smad in the TGF-beta pathway 37 CHAPTER 4. DISCUSSION 38 4.1. Different glycoproteomic approaches have advantages and disadvantages 38 4.2. Fourteen distinctive glycoproteins in A549-FucT4 cells 40 4.3. Difficulties and challenges in glycoproteomics 42 References 44 | |
| dc.language.iso | en | |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 醣蛋白 | zh_TW |
| dc.subject | 嗜醣蛋白親合純化 | zh_TW |
| dc.subject | 第四型岩藻醣轉酶 | zh_TW |
| dc.subject | 醣蛋白質體學 | zh_TW |
| dc.subject | Lung cancer | en |
| dc.subject | Glycoproteins | en |
| dc.subject | Lectin affinity enrichment | en |
| dc.subject | Fucosyltransferase IV | en |
| dc.subject | Glycoproteomic | en |
| dc.title | 第四型岩藻醣轉酶超量表現對肺癌細胞株醣蛋白的影響 | zh_TW |
| dc.title | Glycoproteomics of fucosyltransferase IV-overexpressed A549 cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 阮雪芬(Hsueh-Fen Juan),黃宣誠(Hsuan-Cheng Huang),吳盈達(Ying-Ta Wu) | |
| dc.subject.keyword | 肺癌,醣蛋白,嗜醣蛋白親合純化,第四型岩藻醣轉酶,醣蛋白質體學, | zh_TW |
| dc.subject.keyword | Lung cancer,Glycoproteins,Lectin affinity enrichment,Fucosyltransferase IV,Glycoproteomic, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
