Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63810
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨(Huai-Jen Tsai)
dc.contributor.authorYu-Yun Dingen
dc.contributor.author丁郁芸zh_TW
dc.date.accessioned2021-06-16T17:19:44Z-
dc.date.available2018-07-01
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation楊欣蓉 (2009) 碩士論文:microRNA miR-1 藉由直接抑制目標基因 seryl-tRNA synthetase 以調控斑馬魚快肌之肌動蛋白排列。台灣大學分子與細胞生物學研究所。
Adams, R.H and Alitalo, K. (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol., 8, 464–478.
Alvarez-Garcia, I. and Miska, E.A. (2005) MicroRNA functions in animal development and human disease. Development, 132, 4653–4562.
Anderson, C., Catoe, H. and Werner, R. (2006) MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res., 34, 5863–5871.
Aqeilan, R.I., Calin, G.A. and Croce, C.M. (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ., 17, 215–220.
Bahary, N., Goishi, K., Stuckenholz, C., Weber, G., Leblanc, J., Schafer, C.A., Berman, S.S., Klagsbrun, M. and Zon, LI. (2007) Duplicate VegfA genes and orthologues of the KDR receptor tyrosine kinase family mediate vascular development in the zebrafish. Blood, 110, 3627–3636.
Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.
Bartel, D.P. (2009) MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.
Berezikov, E., Chung, W.J., Willis, J., Cuppen, E. and Lai, E.C. (2007) Mammalian mirtron genes. Mol. Cell, 28, 328–336.
Bernstein, E., Kim, S.Y., Carmell, M.A., Murchison, E.P., Alcorn, H., Li, M.Z., Mills, A.A., Elledge, S.J., Anderson, K.V. and Hannon, G.J. (2003) Dicer is essential for mouse development. Nat. Genet., 35, 215–217.
Brennecke, J., Stark, A., Russell, R.B. and Cohen, S.M. (2005) Principles of microRNA-target recognition. PLoS Biol., 3, e85.
Buckingham, M. (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev., 16, 525–532.

Bushati, N. and Cohen, S.M. (2007) microRNA functions. Annu. Rev. Cell Dev. Biol., 23, 175–205.
Carmeliet, P. (2000) Machanism of angiogenesis and arterogensis. Nature Med., 6, 389–395.
Carmeliet, P. (2005) Angiogenesis in life, disease and medicine. Nature, 438, 932–936.
Carmeliet, P. and Tessier-Lavigne, M. (2005) Common mechanisms of nerve and blood vessel wiring. Nature, 436, 193–200.
Chen, C.Z. (2005) MicroRNAs as oncogenes and tumor suppressors. New Engl. J. Med., 353, 1768–1771.
Chen, C.Z., Li, L., Lodish, H.F. and Bartel, D.P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science, 303, 83–86.
Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L. and Wang, D.Z. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet., 38, 228–233.
Chereau, D., Boczkowska, M., Skwarek-Maruszewska, A., Fujiwara, I., Hayes, D.B., Rebowski, G., Lappalainen, P., Pollard, T.D. and Dominguez, R. (2008) Leiomodin is an actin filament nucleator in muscle cells. Science, 320, 239-243.
Childs, S., Chen, J.N., Garrity, D.M., and Fishman, M.C. (2002) Patterning of angiogenesis in the zebrafish embryo. Development, 129, 973–982.
Colville-Nash, P.R. and Willoughby, D.A. (1997) Growth factors in angiogenesis: current interest and therapeutic potential. Mol. Med. Today, 3, 14–23.
Covassin, L.D., Villefranc, J.A., Kacergis, M.C., Weinstein, B.M. and Lawson, N.D. (2006) Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc. Natl. Acad. Sci. U S A., 103, 6554–6559.
Croce, C.M. (2009) Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet., 10, 704–714.
Datta, J., Kutay, H., Nasser, M.W., Nuovo, G.J., Wang, B., Majumder, S., Liu, CG., Volinia, S., Croce, C.M., Schmittgen, T.D., Ghoshal, K. and Jacob, S.T. (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res., 68, 5049–5058.
Doench, J.G. and Sharp, P.A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev., 18, 504-511.
Erson, A.E. and Petty, E.M. (2008) MicroRNAs in development and disease. Clin Genet, 74, 296-306.
Fish, J.E., Santoro, M.M., Morton, S.U., Yu, S., Yeh, R.F., Wythe, J.D., Ivey, K.N., Bruneau, B.G., Stainier, D.Y. and Srivastava, D. (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell, 15, 272–284.
Ferrara, N. (1999) Vascular endothelial growth factor: molecular and biological aspects. Curr. Top. Microbiol. Immunol., 237,1–30.
Folkman, J. (1995) Clinical applications of research on angiogenesis. N. Engl. J. Med., 333, 1757–1763.
Friedman, R.C., Farh, K.K., Burge, C.B. and Bartel, D.P. (2009) Most mammalian mRNAs are conserved targets of micro- RNAs. Genome Res., 19, 92–105.
Fukui, H., Hanaoka, R. and Kawahara, A. (2009) Noncanonical activity of seryl-tRNA synthetase is involved in vascular development. Circ. Res., 104, 1253–1259.
Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D. and Betsholtz, C. (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161, 1163–1177.
Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P. and Schier, A.F. (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838.
Gómez-Benito, M., Conchillo, A., García, M.A., Vázquez, I., Maicas, M., Vicente, C., Cristobal, I., Marcotegui, N., García-Ortí, L., Bandrés, E., Calasanz, M.J., Alonso, M.M. and Odero, M.D. (2010) EVI1 controls proliferation in acute myeloid leukaemia through modulation of miR-1-2. Br. J. Cancer, 103, 1292–1296.
Griffiths-Jones, S., Saini, H.K., van Dongen, S. and Enright, A.J. (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res., 36, D154–D158.
Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P. and Bartel, D.P. (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell, 27, 91–105.
Gruic-Sovulj, I., Landeka, I., Soll, D. and Weygand-Durasevic, I. (2002) tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase. Eur. J. Biochem., 269, 5271–5279.
Gunkel, S., Heineke, J., Hilfiker-Kleiner, D. and Knöll, R. (2009) MLP: a stress sensor goes nuclear. J. Mol. Cell Cardiol., 47, 423–435.
Gutiérrez, N.C., Sarasquete, M.E., Misiewicz-Krzeminska, I., Delgado, M., De Las Rivas, J., Ticona, F.V., Fermiñán, E., Martín-Jiménez, P., Chillón, C., Risueño, A., Hernández, J.M., García-Sanz, R., González, M., San Miguel, J.F. (2010) Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia, 24, 629–637.
Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H. and Kim, V.N. (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 18, 3016–3027.
Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of angiogenic switch during tumorigenesis. Cell, 86, 353–364.
Hayashi, K., Chuva de Sousa Lopes, S.M., Kaneda, M., Tang, F., Hajkova, P., Lao, K., O’Carroll, D., Das, P.P., Tarakhovsky, A., Miska, E A. and Surani, M.A. (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS ONE, 3, e1738.
Hartlein, M. and Cusack, S. (1995) Structure, function and evolution of seryl-tRNA synthetases : implications for the evolution of aminoacyl-tRNA synthetases and the genetic code. J. Mol. Evol., 40, 519–530.
Herzog, W., Müller, K., Huisken, J. and Stainier, D.Y. (2009) Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circ Res., 104, 1260–1266.
Holderfield, M.T. and Hughes, C.C. (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ. Res., 102, 637–652.
Houbaviy, H.B., Murray, M.F. and Sharp, P.A. (2003) Embryonic stem cell-specific MicroRNAs. Dev. Cell, 5, 351–358.
Hsu, R.J., Yang, H.J. and Tsai, H.J. (2009) Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res., 37, e77.
Hurst, D.R., Edmonds, M.D. and Welch, D.R. (2009) Metastamir : the field of metastasis-regulatory microRNA is spreading. Cancer Res., 69, 7495–7498.
Hutvagner, G. and Simard, M.J. (2008) Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol., 9, 22–32.
Isogai, S., Horiguchi, M., and Weinstein, B.M. (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol., 230, 278–301.
Jakobsson, L., Franco, C.A., Bentley, K., Collins, R.T., Ponsioen, B., Aspalter, I.M., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S. and Gerhardt, H. (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol., 12, 943–953.
Kawakami, K., Enokida, H., Chiyomaru, T., Tatarano, S., Yoshino, H., Kagara, I., Gotanda, T., Tachiwada, T., Nishiyama, K., Nohata, N., Seki, N. and Nakagawa, M. (2012) The functional significance of miR-1 and miR-133a in renal cell carcinoma. Eur. J. Cancer, 48, 827–836
Kawamata, T. and Tomari, Y. (2010) Making RISC. Trends Biochem. Sci., 35, 368–376.
Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F., Moulton, J.D. and Plasterk, R.H. (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol., 5, e203.
Ko, Y.G., Kim, E.Y., Kim, T., Park, H., Park, H.S., Choi, E.J. and Kim, S. (2001) Glutaminedependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J. Biol. Chem., 276, 6030–6036.
Kojima, S., Chiyomaru, T., Kawakami, K., Yoshino, H., Enokida, H., Nohata, N., Fuse, M., Ichikawa, T., Naya, Y., Nakagawa, M. and Seki, N. (2012) Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br. J. Cancer, 106, 405–413.
Konieczny, P., Fuchs, P., Reipert, S., Kunz, W.S., Zeöld, A., Fischer, I., Paulin, D., Schröder, R. and Wiche, G. (2008) Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J. Cell Biol., 181, 667–681.
Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M. and Stoffel, M. (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature, 438, 685-689.
Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.
Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 23, 4051–4060.
Lee, Y.N. and Razin, E. (2005) Nonconventional involvement of LysRS in the molecular mechanism of USF2 transcriptional activity in FcepsilonRIactivated mast cells. Mol. Cell Biol., 25, 8904–8912.
Leone, V., D’Angelo, D., Rubio, I., de Freitas, P.M., Federico, A., Colamaio, M., Pallante, P., Medeiros-Neto, G. and Fusco, A. (2011) MiR-1 is a tumor suppressor in thyroid carcinogenesis targeting CCND2, CXCR4, and SDF-1alpha. J. Clin. Endocrinol. Metab., 96, E1388–E1398.
Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.
Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. and Burge, C.B. (2003) Prediction of mammalian microRNA targets. Cell, 115, 787–798.
Li, D., He, B., Zhang, H., Shan, S.F., Liang, Q., Yuan, W.J. and Ren, A.J. (2012) The inhibitory effect of miRNA-1 on ET-1 gene expression. FEBS Lett., 586, 1014–1021.
Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S. and Johnson, J.M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773.
Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R. and Golub, T.R. (2005) MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.
Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. and Kutay, U. (2004) Nuclear export of microRNA precursors. Science, 303, 95–98.
Luther, P.K. (1991) Three-dimensional reconstruction of a simple Z-band in fish muscle. J. Cell Biol., 113, 1043–1055.
Mishima, Y. (2012) Widespread roles of microRNAs during zebrafish development and beyond. Dev. Growth Differ., 54, 55–65.
Mishima, Y., Abreu-Goodger, C., Staton, A.A., Stahlhut, C., Shou, C., Cheng C, Gerstein, M., Enright, A.J.and Giraldez, A.J.. (2009) Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes Dev, 619-32.
Mermelstein, C.S., Andrade, L.R., Portilho, D.M. and Costa, M.L. (2006) Desmin filaments are stably associated with the outer nuclear surface in chick myoblasts. Cell Tissue Res., 323, 351–357.
Meyer, M., Clauss, M., Lepple-Wienhues, A., Waltenberger, J., Augustin, H.G., Ziche, M., Lanz, C., Böttner, M., Rziha, H.J. and Dehio, C. (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signaling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J., 18, 363–374.
Mocibob, M. and Weygand-Durasevic, I. (2008) The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo. Arch. Biochem. Biophys., 470, 129–138.
Murchison, E.P., Stein, P., Xuan, Z., Pan, H., Zhang, M.Q., Schultz, R.M. and Hannon, G.J. (2007) Critical roles for Dicer in the female germline. Genes Dev., 21, 682–693.
Nakajima, N., Takahashi, T., Kitamura, R., Isodono, K., Asada, S., Ueyama, T., Matsubara, H. and Oh, H. (2006) MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem. Biophys. Res. Commun., 350, 1006–1012.
Nasser, M.W., Datta, J., Nuovo, G., Kutay, H., Motiwala, T., Majumder, S., Wang, B., Suster, S., Jacob, S.T. and Ghoshal, K. (2008) Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J. Biol. Chem., 283, 33394–33405.
Nohata, N., Hanazawa, T., Kikkawa, N., Sakurai, D., Sasak,i K., Chiyomaru, T., Kawakami, K., Yoshino, H., Enokida, H., Nakagawa, M., Okamoto, Y. and Seki, N. (2011) Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int. J. Oncol., 39, 1099–1107.
Nohata, N., Sone, Y., Hanazawa, T., Fuse, M., Kikkawa, N., Yoshino, H., Chiyomaru, T., Kawakami, K., Enokida, H., Nakagawa, M., Shozu, M., Okamoto, T. and Seki, N. (2011) miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma. Oncotarget, 2, 29–44.
O'Rourke, J.R., Georges, S.A., Seay, H.R., Tapscott, S.J., McManus, M.T., Goldhamer, D.J., Swanson M.S. and Harfe, B.D. (2007) Essential role for Dicer during skeletal muscle development. Dev. Biol., 311, 359–368.
Okamura, K., Hagen, J.W., Duan, H., Tyler, D.M. and Lai, E.C. (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 130, 89–100.
Olive, V., Jiang, I. and He, L. (2010) mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int. J. Biochem. Cell Biol., 42, 1348–1354.
Park, S.G., Schimmel, P. and Kim, S. (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc. Natl. Acad. Sci. U S A, 105, 11043–11049.
Pfeffer, S. and Voinnet, O. (2006) Viruses, microRNAs and cancer. Oncogene, 25, 6211–6219.
Podar, K. and Anderson, K.C. (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood, 105, 1383–1395.
Poltorak, Z., Cohen, T., Sivan, R., Kandelis, Y., Spira, G., Vlodavsky, I., Keshet, E. and Neufeld, G. (1997) VEGF145, a secreted vascular endothelial cell isoform, that binds to extracellular matrix. J. Biol. Chem., 272, 7151–7158.
Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432, 226-230.
Rajewsky, N. (2006) microRNA target predictions in animals. Nat. Genet., 38(Suppl), S8–S13.
Rao, P.K., Missiaglia, E., Shields, L., Hyde, G., Yuan, B., Shepherd, C.J., Shipley, J. and Lodish, H.F. (2010) Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J., 24, 3427–3437.
Ray, P.S. and Fox, P.L. (2007) A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. EMBO J., 26, 3360–3372.
Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R. and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901–906.
Risau W. (1997) Mechanisms of angiogenesis. Nature, 386, 71–74.
Rossi, J.J. (2005) Mammalian Dicer finds a partner. EMBO Rep., 6, 927–929.
Sampath, P., Mazumder, B., Seshadri, V., Gerber, C.A., Chavatte, L., Kinter, M., Ting, S.M., Dignam, J.D., Kim, S., Driscoll, D.M. and Fox, P.L. (2004) Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell, 119, 195–208.
Schmidt, A. and Hall, M.N. (1998) Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol., 14, 305–338.
Scholl, F.A., McLoughlin, P., Ehler, E., de Giovanni, C. and Schäfer, B.W. (2000) DRAL is a p53-responsive gene whose four and a half LIM domain protein product induces apoptosis. J. Cell Biol., 151, 495–506.
Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E. and Ambros, V. (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol., 5, R13.
Siekmann, A.F., Covassin, L. and Lawson, N.D. (2008) Modulation of VEGF signaling output by the Notch pathway. Bioessays, 30, 303–313.
Skarp, K.P. and Vartiainen, M.K. (2010) Actin on DNA-an ancient and dynamic relationship. Cytoskeleton (Hoboken), 67, 487–495.
Small, E.M. and Olson, E.N. (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature, 469, 336–342.
Srivastava, D. and Yu, S. (2006) Stretching to meet needs: integrin-linked kinase and the cardiac pump. Genes Dev., 20, 2327–2331.
Suzuki, H., Takatsuka, S., Akashi, H., Yamamoto, E., Nojima, M., Maruyama, R., Kai, M., Yamano, H.O., Sasaki, Y., Tokino, T., Shinomura, Y., Imai, K. and Toyota, M. (2011) Genome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer. Cancer Res., 71, 5646–5658.
Sweetman, D., Goljanek, K., Rathjen, T., Oustanina, S., Braun, T., Dalmay, T. and Münsterberg, A. (2008) Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev. Biol., 321, 491–499.
Tapscott, S.J. (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development, 132, 2685–2695.
Torres-Vazquez, J., Gitler, A.D., Fraser, S.D., Berk, J.D., Van, N.P., Fishman, M.C., Childs, S., Epstein, J.A. and Weinstein, B.M. (2004) Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev. Cell, 7, 117–123.
van Rooij, E., Liu, N. and Olson, E.N. (2008) MicroRNAs flex their muscles. Trends Genet., 24, 159–166.
Wakasugi, K. and Schimmel, P. (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science, 284, 147–151.
Wakasugi, K., Slike, B.M., Hood, J., Otani, A., Ewalt, K.L., Friedlander, M., Cheresh, D.A. and Schimmel, P. (2002) A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc. Natl. Acad. Sci. U S A, 99, 173–177.
Wang, F., Song, G., Liu, M., Li, X., Tang, H. (2011) miRNA-1 targets fibronectin1 and suppresses the migration and invasion of the HEp2 laryngeal squamous carcinoma cell line. FEBS Lett., 585, 3263–3269.
Wienholds, E., Koudijs, M.J., van Eeden, F.J., Cuppen, E. and Plasterk, R.H. (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet., 35, 217–218.
Witt, C.C., Burkart, C., Labeit, D., McNabb, M., Wu, Y., Granzier, H. and Labeit, S. (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J., 25, 3843–3855.
Xu, X., Shi, Y., Zhang, H.M., Swindell, E.C., Marshall, A.G., Guo, M., Kishi, S., Yang, X.L. (2012) Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nat. Commun., 3, 681–689.
Yoshino, H., Chiyomaru, T., Enokida, H., Kawakami, K., Tatarano, S., Nishiyama, K., Nohata, N., Seki, N. and Nakagawa, M. (2011) The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br. J. Cancer, 104, 808–818.
Zhang, Q.X., Magovern, C.J., Mack, C.A., Budenbender, K.T., Ko, W. and Rosengart, T.K. (1997) Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J. Surg. Res., 67, 147–154.
Zhao, Y., Samal, E. and Srivastava, D. (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214–220.
Zou, P., Pinotsis, N., Lange, S., Song, Y.H., Popov, A., Mavridis, I., Mayans, O.M., Gautel, M. and Wilmanns, M. (2006) Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature, 439, 29–33.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63810-
dc.description.abstract微型核醣核酸 microRNA-1 (miR-1) 為一段 22 nt 之非轉譯核醣核酸,是肌肉專一型微型核醣核酸 (muscle-specific miRNA)。雖然已知 miR-1 可專一地表現於心肌與骨骼肌,但參與在軀幹部骨骼肌的分子調控機制尚不清楚。我們利用 Labeled microRNA pull-down (LAMP) assay system 篩選,並配合 Microarray assay 分析,先找到在斑馬魚中 miR-1 會與 seryl-tRNA synthetase (sars) mRNA 的 3’ 端非轉譯區 (3’UTR) 結合。再利用 Luciferase reporter assay system 於斑馬魚胚胎及小鼠肌肉纖維母細胞株 C2C12 中證實了 miR-1 會透過 sars-3’UTR抑制報導基因的表現;並且由西方浸漬法證明當 miR-1 被抑制時斑馬魚內生性 Sars 蛋白質的表現量會增加。若於胚胎中降低 miR-1 表現以及過量表現 sars mRNA皆造成斑馬魚胚胎體節末端異常,並且軀幹部快肌的肌動蛋白絲 (actin filament) 彎曲、排列混亂,α-sarcomeric G-actin/F-actin 比率增加,顯示肌動蛋白絲傾向去聚合化,形成游離型肌動蛋白。進一步發現 Sars 蛋白質可表現於快肌肌小節的 Z-disc,並且由 GST pull-down assay 證明 Sars 與肌肉特異性的 α-橫紋肌肌動蛋白 (α-sarcomeric actin) 具有交互作用;此外,於胚胎中血管發育缺失,其體節間血管 (ISV) 生長遲緩,無法正常向上延伸至背部。經定量 RT-PCR (quantitative real-time PCR) 檢測,降低 miR-1 表現以及過量表現 sars 之胚胎,會造成血管內皮生長因子 (vegfa) mRNA 表現量降低,經由西方浸漬法證實 Vegfa 蛋白質表現也下降,並且於C2C12 細胞中證實過度表現 miR-1 則會抑制 Sars 蛋白質,並促進 Vegfa 蛋白質表現。以 Cytochalasin D 浸泡斑馬魚胚胎使其肌動蛋白絲去聚合化,發現體節間血管生長緩慢,並於 C2C12 細胞中偵測到 Vegfa 蛋白質表現量下降。綜合以上結果,我們證實 miR-1 藉著微量調降目標基因 sars 之蛋白質轉譯以維持軀幹部體節常態發育及快肌肌動蛋白絲的正常聚合化,進而促使 vegfa mRNA 及蛋白質適當表現以維繫血管正常生長之發育途徑模式。zh_TW
dc.description.abstractMicroRNA-1 (miR-1), a 22-nucleotide, endogenous non-coding RNA, is a muscle-specific miRNA significantly expressed in cardiac and skeletal muscle. However, the detailed molecular regulatory mechanism of miR-1 in the skeletal muscle is still unknown. Therefore, using both miRNA pull-down assay and microarray analysis, we screened putative mRNA targets of miR-1 from whole-cell extracts of zebrafish embryos at 48-hpf, and seryl-tRNA synthetase (sars) was obtained. When miR-1 bound the 3’-untranslated region (3’UTR) of sars mRNA (sars-3’UTR) in zebrafish embryos, luciferase activity was repressed, unless the miR-1 binding site of sars-3’UTR was mutated. As validated by western blot analysis, knockdown of miR-1 increased the protein level of endogenous Sars. Both overexpression of sars mRNA and knockdown of miR-1 in zebrafish embryos caused the twisting tail of embryo body, the disruption of fast-twitch muscle actin organization and the winding of actin filaments. We found that the ratio of α-sarcomeric G-actin / F-actin was also increased, indicating that α-sarcomeric actin filements were depolymerized. Furthermore, Sars was interacted with α-sarcomeric actin and located at Z-disc. Besides, we observed the disorganized vessels and abnormal delay of established intersegmental vessels in embryos which either gained sars or lost miR-1. Moreover, vegfa mRNA and its protein level were all decreased. When we disrupted the actin filaments in embryos which was treated with Cytochalasin D, a depolymerized actin filaments drug, the intersegmental vessels was disorganized and abnormal delay. And the Vegfa protein of C2C12 cells that were treated with Cytochalasin D was decreased. These findings led to the conclusion that miR-1 contributes to normal angiogenesis in zebrafish embryos by reducing the amount of Sars protein to maintain actin organization of trunk fast-twitch fibrils that keeps the appropriate expression of vegfa mRNA and protein.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:19:44Z (GMT). No. of bitstreams: 1
ntu-101-R99b43022-1.pdf: 2894071 bytes, checksum: 99569316e6b3ac9a8a87d4681cab7d9d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要------------------------------------------------------------------------ 1
英文摘要------------------------------------------------------------------------ 2
文獻回顧------------------------------------------------------------------------ 3
前言------------------------------------------------------------------------------ 13
材料與方法--------------------------------------------------------------------- 15
結果------------------------------------------------------------------------------ 31
討論----------------------------------------------------------------------------- 41
總結----------------------------------------------------------------------------- 49
參考文獻----------------------------------------------------------------------- 50
圖-------------------------------------------------------------------------------- 61
附錄----------------------------------------------------------------------------- 78
dc.language.isozh-TW
dc.titleMicroRNA-1 藉由抑制 seryl-tRNA synthetase 基因
以調控斑馬魚胚胎時期血管的生成
zh_TW
dc.titleMicroRNA-1 modulates angiogenesis through silencing the
seryl-tRNA synthetase gene during zebrafish embryogenesis
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡清華(Chin-Hwa Hu),蔡振寧(Jen-Ning Tsai),朱家瑩(Chia-Ying Chu)
dc.subject.keyword微型核醣核酸,血管新生,胚胎發育,zh_TW
dc.subject.keywordMicroRNA-1,seryl-tRNA synthetase,angiogenesis,embryogenesis,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2012-08-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved