Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63796
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佩貞(Pei-Jen Chen)
dc.contributor.authorWan-Lin Wuen
dc.contributor.author吳宛霖zh_TW
dc.date.accessioned2021-06-16T17:19:22Z-
dc.date.available2015-08-27
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citationAi, J., E. Biazar, M. Jafarpour, M. Montazeri, A. Majdi, S. Aminifard, M. Zafari, H.R. Akbari, and H.G. Rad. 2011. Nanotoxicology and nanoparticle safety in biomedical designs. Int. J. Nanomedicine. 6:1117-1127.
Auffan, M., W. Achouak, J. Rose, M.A. Roncato, C. Chaneac, D.T. Waite, A. Masion, J.C. Woicik, M.R. Wiesner, and J.Y. Bottero. 2008. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 42:6730-6735.
Bai, W., Z.Y. Zhang, W.J. Tian, X. He, Y.H. Ma, Y.L. Zhao, and Z.F. Chai. 2010. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J. Nanopart. Res. 12:1645-1654.
Baun, A., S.N. Sorensen, R.F. Rasmussen, N.B. Hartmann, and C.B. Koch. 2008. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C-60. Aquat. Toxicol. 86:379-387.
Beauchamp, C., and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-287.
Beers, R.F., Jr., and I.W. Sizer. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195:133-140.
Bostanci, M.O., and F. Bagirici. 2008. Neuroprotective effect of aminoguanidine on iron-induced neurotoxicity. Brain. Res. Bull. 76:57-62.
Catalkaya, E.C., and F. Kargi. 2007. Effects of operating parameters on advanced oxidation of diuron by the Fenton's reagent: a statistical design approach. Chemosphere. 69:485-492.
Chen, J., X. Dong, Y. Xin, and M. Zhao. 2011a. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat. Toxicol. 101:493-499.
Chen, P.J., S.W. Tan, and W.L. Wu. 2012. Stabilization or Oxidation of Nanoscale Zerovalent Iron at Environmentally Relevant Exposure Changes Bioavailability and Toxicity in Medaka Fish. Environ. Sci. Technol.
Chen, P.J., C.H. Su, C.Y. Tseng, S.W. Tan, and C.H. Cheng. 2011b. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar. Pollut. Bull. 63:339-346.
Cheung, M.T.C. 2011. Embryotoxicity of fluoxetine (ProzacR) to Japanese medaka (Oryzias latipes).
Choi, J.E., S. Kim, J.H. Ahn, P. Youn, J.S. Kang, K. Park, J. Yi, and D.Y. Ryu. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat. Toxicol. 100:151-159.
Christian, P., F. Von der Kammer, M. Baalousha, and T. Hofmann. 2008. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology. 17:326-343.
Cirtiu, C.M., T. Raychoudhury, S. Ghoshal, and A. Moores. 2011. Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers. Colloids Surf. A. 390:95-104.
Cosgrove, T. 2005. Colloid science : principles, methods and applications Blackwell Pub., Oxford, UK ; Ames, Iowa.
Cundy, A.B., L. Hopkinson, and R.L.D. Whitby. 2008. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Total Environ. 400:42-51.
Fent, K. 2010. Ecotoxicology of Engineered Nanoparticles.
Flood, C., C.A. Dreiss, V. Croce, T. Cosgrove, and G. Karlsson. 2005. Wormlike micelles mediated by polyelectrolyte. Langmuir : the ACS journal of surfaces and colloids 21:7646-7652.
Foster, J.G., and J.L. Hess. 1980. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66:482-487.
Fujiwara, T., H. O'Geen, S. Keles, K. Blahnik, A.K. Linnemann, Y.A. Kang, K. Choi, P.J. Farnham, and E.H. Bresnick. 2009. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol. Cell. 36:667-681.
Fukahori, S., H. Ichiura, T. Kitaoka, and H. Tanaka. 2003. Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique. Environ. Sci. Technol. 37:1048-1051.
Geng, B., Z.H. Jin, T.L. Li, and X.H. Qi. 2009. Kinetics of hexavalent chromium removal from water by chitosan-Fe-0 nanoparticles. Chemosphere. 75:825-830.
Giri, S., B.G. Trewyn, M.P. Stellmaker, and V.S.Y. Lin. 2005. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angewandte Chemie-International Edition 44:5038-5044.
Gregory, J. 1989. Basic Principles of Colloid Science - Everett,Dh. Nature 338:182-182.
Grieger, K.D., A. Fjordboge, N.B. Hartmann, E. Eriksson, P.L. Bjerg, and A. Baun. 2010. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J. Contam. Hydrol. 118:165-183.
Haber, F., and J. Weiss. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 147:332-351.
He, F., and D.Y. Zhao. 2007. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ. Sci. Technol. 41:6216-6221.
He, F., M. Zhang, T. Qian, and D. Zhao. 2009. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. J. Colloid Interf. Sci. 334:96-102.
Hermosilla, D., M. Cortijo, and C.P. Huang. 2009. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci. Total Environ. 407:3473-3481.
Huang, C., C. Dong, and Z. Tang. 1993. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Mange. 13:361-377.
Hydutsky, B.W., E.J. Mack, B.B. Beckerman, J.M. Skluzacek, and T.E. Mallouk. 2007. Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ. Sci. Technol. 41:6418-6424.
Ishikawa, Y. 2000. Medakafish as a model system for vertebrate developmental genetics. Bioessays. 22:487-495.
Iwamatsu, T. 2004. Stages of normal development in the medaka Oryzias latipes. Mech. Dev. 121:605-618.
Jiemvarangkul, P., W.X. Zhang, and H.L. Lien. 2011. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem. Eng. J. 170:482-491.
Kadar, E., G.A. Tarran, A.N. Jha, and S.N. Al-Subiai. 2011. Stabilization of engineered zero-valent nanoiron with na-acrylic copolymer enhances spermiotoxicity. Environ. Sci. Technol. 45:3245-3251.
Karabelli, D., S. Unal, T. Shahwan, and A.E. Eroglu. 2011. Preparation and characterization of alumina-supported iron nanoparticles and its application for the removal of aqueous Cu2+ ions. Chem. Eng. J. 168:979-984.
Karlsson, H.L., J. Gustafsson, P. Cronholm, and L. Moller. 2009. Size-dependent toxicity of metal oxide particles-A comparison between nano- and micrometer size. Toxicol. Lett. 188:112-118.
Karn, B., T. Kuiken, and M. Otto. 2009. Nanotechnology and in situ remediation: a Review of the benefits and potential risks. Environ. Health Persp. 117:1823-1831.
Karn, B., T. Kuiken, and M. Otto. 2011. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Cienc Saude Coletiva. 16:165-178.
Kashiwada, S. 2006. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ. Health Persp. 114:1697.
Keane, E. 2010. Fate, Transport and Toxicity of Nanoscale Zero-Valent Iron (nZVI) Used During Superfund Remediation. Duke University.
Keenan, C.R., and D.L. Sedlak. 2008. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 42:1262-1267.
Kim, H.J., T. Phenrat, R.D. Tilton, and G.V. Lowry. 2009. Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol. 43:3824-3830.
Klaine, S.J., P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, and J.R. Lead. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27:1825-1851.
Koh, S.J., T. Song, Y.A. Kang, J.W. Choi, K.J. Chang, C.S. Chu, J.G. Jeong, J.Y. Lee, M.K. Song, H.Y. Sung, Y.H. Kang, and J.J. Yim. 2010. An outbreak of skin and soft tissue infection caused by Mycobacterium abscessus following acupuncture. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 16:895-901.
Kristiansen, K.A., P.E. Jensen, I.M. Moller, and A. Schulz. 2009. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy. Physiol. Plant. 136:369-383.
Ku, Y., and I.L. Jung. 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35:135-142.
LeBel, C.P., H. Ischiropoulos, and S.C. Bondy. 1992. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5:227-231.
Lee, C., C.R. Keenan, and D.L. Sedlak. 2008a. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 42:4921-4926.
Lee, C., J.Y. Kim, W.I. Lee, K.L. Nelson, J. Yoon, and D.L. Sedlak. 2008b. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 42:4927-4933.
Lee, K.J., P.D. Nallathamby, L.M. Browning, C.J. Osgood, and X.H.N. Xu. 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. Acs Nano. 1:133-143.
Li, H., Q. Zhou, Y. Wu, J. Fu, T. Wang, and G. Jiang. 2009. Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety 72:684-692.
Li, Z.Q., K. Greden, P.J.J. Alvarez, K.B. Gregory, and G.V. Lowry. 2010. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ. Sci. Technol. 44:3462-3467.
Limbach, L.K., P. Wick, P. Manser, R.N. Grass, A. Bruinink, and W.J. Stark. 2007. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 41:4158-4163.
Lin, D.H., X.L. Tian, F.C. Wu, and B.S. Xing. 2010. Fate and transport of engineered nanomaterials in the environment. J. Environ. Qual. 39:1896-1908.
Matheson, L.J., and P.G. Tratnyek. 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28:2045-2053.
Metcalfe, C., E. Bennett, M. Chappell, J. Steevens, M. Depledge, G. Goss, S. Goudey, S. Kaczmar, N. O'Brien, A. Picado, and A.B. Ramadan. 2009. SMARTEN strategic management and assessment of risks and toxicity of engineered nanomaterials. Nato. Sci. Peace. Secur:95-109.
Nurmi, J.T., P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, and M.D. Driessen. 2005. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39:1221-1230.
Paterson, G., J.M. Ataria, M.E. Hoque, D.C. Burns, and C.D. Metcalfe. 2011. The toxicity of titanium dioxide nanopowder to early life stages of the Japanese medaka (Oryzias latipes). Chemosphere. 82:1002-1009.
Phenrat, T., T.C. Long, G.V. Lowry, and B. Veronesi. 2008a. Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ. Sci. Technol. 43:195-200.
Phenrat, T., N. Saleh, K. Sirk, R.D. Tilton, and G.V. Lowry. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41:284-290.
Phenrat, T., N. Saleh, K. Sirk, H.J. Kim, R.D. Tilton, and G.V. Lowry. 2008b. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 10:795-814.
Ponder, S.M., J.G. Darab, and T.E. Mallouk. 2000. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34:2564-2569.
Preuss, M., G.D. Girnun, C.J. Darby, N. Khoo, A.A. Spector, and M.E. Robbins. 2000. Role of antioxidant enzyme expression in the selective cytotoxic response of glioma cells to gamma-linolenic acid supplementation. Free. Radic. Biol. Med. 28:1143-1156.
Quinn, J., C. Geiger, C. Clausen, K. Brooks, C. Coon, S. O'Hara, T. Krug, D. Major, W.S. Yoon, A. Gavaskar, and T. Holdsworth. 2005. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Technol. 39:1309-1318.
Raychoudhury, T., G. Naja, and S. Ghoshal. 2010. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. J Contam. Hydrol. 118:143-151.
Reeves, J.F., S.J. Davies, N.J. Dodd, and A.N. Jha. 2008. Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res. 640:113-122.
Reinsch, B.C., B. Forsberg, R.L. Penn, C.S. Kim, and G.V. Lowry. 2010. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ. Sci. Technol. 44:3455-3461.
Rickerby, D.G., and M. Morrison. 2007. Nanotechnology and the environment: A European perspective. Sci. Technol. Adv. Mat. 8:19-24.
Roco, M.C. 2005. Environmentally responsible development of nanotechnology. Environ. Sci. Technol. 39:106a-112a.
Saleh, N., H.J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, and G.V. Lowry. 2008. Ionic strength and composition affect the mobility of surface-modified Fe-0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol. 42:3349-3355.
Saleh, N., T. Phenrat, K. Sirk, B. Dufour, J. Ok, T. Sarbu, K. Matyiaszewski, R.D. Tilton, and G.V. Lowry. 2005. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano. Lett. 5:2489-2494.
Scherer, M.M., S. Richter, R.L. Valentine, and P.J.J. Alvarez. 2000. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Microbiol. 26:221-264.
Shafieiyoun, S., T. Ebadi, and M. Nikazar. 2011. Organic load removal of landfill leachate by fenton process using nano sized zero valent iron particles. Proc. International Conference on Environmental Science and Technology, Singapore2011.
Shang, E.H.H., and R.S.S. Wu. 2004. Aquatic hypoxia is a teratogen and affects fish embryonic development. Environ. Sci. Technol. 38:4763-4767.
Spitz, D.R., and L.W. Oberley. 1989. An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal. Biochem. 179:8-18.
Stookey, L. 1970. Two new spectrophotometric reagents for copper. Talanta 17:644-647.
Sun, H., T.S. Choy, D.R. Zhu, W.C. Yam, and Y.S. Fung. 2009. Nano-silver-modified PQC/DNA biosensor for detecting E. coli in environmental water. Biosens. Bioelectron. 24:1405-1410.
Theron, J., J.A. Walker, and T.E. Cloete. 2008. Nanotechnology and water treatment: Applications and emerging opportunities. Crit. Rev. Microbiol. 34:43-69.
Tofighy, M.A., and T. Mohammadi. 2011. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard Mater. 185:140-147.
Villalobos, S.A., J.T. Hamm, S.J. Teh, and D.E. Hinton. 2000. Thiobencarb-induced embryotoxicity in medaka (Oryzias latipes): stage-specific toxicity and the protective role of chorion. Aquat. Toxicol. 48:309-326.
Watlington, K. 2005. Emerging nanotechnologies for site remediation and wastewater treatment.
Wittbrodt, J., A. Shima, and M. Schartl. 2002. Medaka--a model organism from the far East. Nat. Rev. Genet. 3:53-64.
Wu, Y., Q. Zhou, H. Li, W. Liu, T. Wang, and G. Jiang. 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat. Toxicol. 100:160-167.
Yamamoto, M., I. Iuchi, and K. Yamagami. 1979. Ultrastructural Changes of the Teleostean Hatching Gland Cell during Natural and Electrically Induced Precocious Secretion. Dev. Biol. 68:162-174.
Zazo, J., J. Casas, A. Mohedano, M. Gilarranz, and J. Rodriguez. 2005. Chemical pathway and kinetics of phenol oxidation by Fenton's reagent. Environ. Sci. Technol. 39:9295-9302.
Zhang, J.S., R.S. Stanforth, and S.O. Pehkonen. 2007. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (alpha-FeOOH). J. Colloid Interf. Sci. 306:16-21.
Zhang, W.X. 2003. Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5:323-332.
Zhao, Z.S., J.F. Liu, C. Tai, Q.F. Zhou, J.T. Hu, and G.B. Jiang. 2008. Rapid decolorization of water soluble azo-dyes by nanosized zero-valent iron immobilized on the exchange resin. Sci. China Ser. B. 51:186-192.
Zhu, M.T., B. Wang, Y. Wang, L. Yuan, H.J. Wang, M. Wang, H. Ouyang, Z.F. Chai, W.Y. Feng, and Y.L. Zhao. 2011. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol. Lett. 203:162-171.
覃世偉。2011。包覆及未包覆奈米零價鐵對青鱂魚苗毒性之探討。碩士論文。台北:台灣大學農業化學系。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63796-
dc.description.abstract奈米零價鐵 (nanoscale zerovalent iron, nZVI) 具有高比表面積且強還原能力,故常被用於地下水或土壤汙染整治;此外,近年來研究指出nZVI會與氧氣作用而產生高反應性的活性氧物種 (reactive oxygen species, ROS),可應用於廢水處理的高級氧化程序。然而一旦nZVI進入環境水體後,其在水域環境中的宿命及可能對環境生態或人類健康造成的影響目前仍不明確。本研究探討穩定化奈米零價鐵 (CMC-nZVI, 27.1±3.7 nm)、奈米氧化鐵 (nFe3O4, 30.1 ± 2.6 nm) 以及亞鐵離子(Fe2+) 對早期發育階段之青鱂魚的生物累積及毒性效應。三種鐵物種造成胚胎的死亡率依序為: CMC-nZVI > Fe2+ > nFe3O4。CMC-nZVI在較高濃度 ( > 100 mg/L)大量消耗暴露溶液中之溶氧,並經由氧化作用產生具毒性之Fe2+與ROS,胚胎的絨毛膜層受ROS及nZVI破壞使暴露溶液中nZVI及相關產物進入胚胎內而造成毒害效應。三種鐵物種處理在胚胎中均有生物累積的現象。此外,CMC-nZVI (暴露7日)對青鱂魚胚胎造成最嚴重之生長發育毒性,而nFe3O4及Fe2+對胚胎的影響程度則相對較低。三種鐵物種均會降低胚胎心跳速率並延遲其孵化;相較於nFe3O4及Fe2+,暴露於高濃度 (>100 mg/L) 的CMC-nZVI造成較嚴重之眼睛發育延遲及眼睛尺寸較小等現象。此外,暴露於三種鐵物種處理之孵化魚苗體內ROS含量相較於控制組均有提升的現象。其中,CMC-nZVI在低濃度 (25-50 mg/L) 即會顯著誘導魚苗體內ROS含量。nFe3O4及Fe2+提高SOD (superoxide dismutase) 活性,然而CMC-nZVI則是隨暴露劑量增加而顯著抑制SOD活性。CMC-nZVI於25 mg/L會誘導CAT (catalase, CAT) 活性,但CAT活性隨暴露劑量上升 (50-200 mg/L) 而下降;而在nFe3O4及Fe2+處理 (25-200 mg/L) 之孵化魚苗其CAT活性隨濃度增加而下降;僅有nFe3O4處理 (25-150 mg/L) 之孵化魚苗體內GR (glutathione reductase, GR) 活性上升。以三種鐵物種處理後之孵化魚苗組織切片結果並未觀察到有明顯的病理變化,但分別在腸道、腸壁、胰或身體組織中觀察到些微的鐵累積。綜合上述結果,相較於nFe3O4及Fe2+處理,CMC-nZVI對青鱂魚胚胎具有較高的急毒性及發育毒性,且三種處理均會對孵化之魚苗造成不同程度的氧化壓力。zh_TW
dc.description.abstractIron-based NPs have been used on wastewater treatment or environmental remediation applications. The public has raised concerns about the increased risk of exposure and toxicity to iron NPs for human and aquatic life. However, the fate and toxic effects of iron NPs in the aquatic ecosystem remain unclear at present. In this study, we have treated embryos of medaka (Oryzias latipes) fish with carboxymethyl cellulose stabilized nanoscale zero-valent iron (CMC-nZVI, 27.1±3.7 nm), nanoscale iron oxide (nFe3O4, 30.1±2.6 nm) and ferrous ion [Fe(II)aq] at dosages of 25-200 mg/L for a 7-day aqueous exposure. We have investigated the mortality, bioaccumulation potency, developmental toxicity and oxidative stress effects of two iron NPs and [Fe(II)aq] in early life stages of medaka. Results show CMC-nZVI caused the severest mortality and developmental toxic effects in embryos. The bioaccumulation potency in embryos exposed to all 3 iron species treatments (50-150 mg/L) was significantly higher than the control. Embryos treated with CMC-nZVI caused the greatest developmental toxicity including decrease in heart rate, eye size and hatching rate, thus leading to hatching delayed, and nFe3O4 while [Fe(II)aq] caused lesser and least effects. Also, intracellular levels of reactive oxygen species and activities of antioxidants such as superoxide dismutase and catalase were altered in hatchings from embryos treated with CMC-nZVI (>25 mg/L), nFe3O4 (200 mg/L) and [Fe(II)aq] (>50 mg/L). Based on histopathological analyses, all 3 iron species treatement didn’t cause pathological changes but led to a slight degree of iron accumulation in the alimentary canal, pancreas and body tissues. The results implicate a potential ecotoxicological impact of nZVI and related oxidized products on the aquatic environment.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:19:22Z (GMT). No. of bitstreams: 1
ntu-101-R99623021-1.pdf: 4965928 bytes, checksum: 7dac6ae0ff248b6314293c43a43df92c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
縮寫對照表 II
摘要 IV
Abstract VI
目錄 VII
圖目錄 X
表目錄 XII
一、前言 1
1.1 奈米科技的應用與潛在風險 1
1.2 人造奈米材料於環境復育方面之應用 5
1.3 奈米零價鐵於環境復育上之應用 8
1.3.1 nZVI應用方式簡述 8
1.3.2 奈米零價鐵的穩定化 9
1.3.3 奈米零價鐵的主要反應機制 12
1.4 奈米零價鐵在環境中可能的行為及宿命 18
1.5 奈米零價鐵對生物可能造成之影響 21
1.5.1 奈米零價鐵對細胞及微生物之毒性效應 21
1.5.2 奈米零價鐵對水生生物之毒性效應 24
1.5.3 奈米零價鐵氧化產物的毒性效應 25
1.6 模式生物 26
1.7 研究動機與目的 27
二、材料與方法 28
2.1 研究架構及說明 28
2.2 實驗材料 30
2.2.1 化學藥品與試劑 30
2.2.2 儀器設備 32
2.3 奈米材料的製備 33
2.3.1 n-Fe3O4 之合成 33
2.3.2 CMC-nZVI之合成 33
2.4奈米材料的定性分析 35
2.4.1穿透式電子顯微鏡觀測 35
2.4.2奈米粒徑暨介面電位分析儀測定 35
2.4.3界達電位 (Zeta potential) 測定 36
2.5模式生物與飼養條件 37
2.5.1 成魚飼養條件及繁殖 37
2.5.2 胚胎試驗 38
2.6不同奈米鐵對於暴露溶液的行為探討 39
2.6.1 暴露中奈米顆粒的團聚行為 39
2.6.2 沉降試驗 39
2.7不同奈米鐵對青鱂魚胚胎之毒性試驗 40
2.7.1 暴露溶液之製備 40
2.7.2 暴露試驗及急毒性測試 40
2.7.3 亞致死毒性效應及生物參數觀察 41
2.7.4 不同奈米鐵對青鱂魚魚苗之氧化壓力試驗 45
2.7.5 胚胎及魚苗組織病理變化與鐵累積觀察 48
2.7.6 暴露溶液之總鐵濃度測試 50
2.8不同奈米鐵的生物累積作用 51
2.8.1 胚胎體內鐵累積作用 51
2.8.2 魚苗體內鐵累積作用 52
2.9 統計分析 53
三、結果與討論 54
3.1奈米鐵顆粒特性分析 54
3.2奈米鐵顆粒於暴露溶液的行為探討 61
3.3不同鐵物種對青鱂魚胚胎之毒性試驗結果 65
3.3.1 急毒性試驗結果 65
3.3.2 亞急毒性效應及生長發育畸形 70
3.4不同鐵物種對青鱂魚胚胎及孵化魚苗之生物累積 76
3.5不同鐵物種對孵化魚苗的氧化壓力 81
3.6處理之孵化後魚苗組織病理變化 85
四、結論 90
五、參考文獻 91
六、附錄 99
dc.language.isozh-TW
dc.title不同奈米鐵對青鱂魚早期發育階段之生物累積及毒性效應zh_TW
dc.titleThe Bioaccumulation and Toxic Effects of Different Iron Nanoparticles in Early Life Stages of Medaka (Oryzias latipes)en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳德豪,(Te-Hao Chen),吳先琪(Shian-Chee Wu),李達源(Dar-Yuan Lee)
dc.subject.keyword青&#40002,魚胚胎,奈米顆粒,穩定化奈米零價鐵,奈米氧化鐵,氧化壓力,zh_TW
dc.subject.keywordmedaka embryo,nano-particles,CMC-nZVI,nano-Fe3O4,oxidative stress,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2012-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved