請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63787完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何志浩(Jr-Hau He) | |
| dc.contributor.author | An-Cheng Li | en |
| dc.contributor.author | 李安晟 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:19:09Z | - |
| dc.date.available | 2017-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-17 | |
| dc.identifier.citation | Chapter 1
1. J. L. Gray, Handbook of Photovoltaic Science and Engineering, 2003, Wiley, 94-95. 2. K. Q. Peng, X. Wang, L. Li, X. L. Wu, and S. T. Lee, J. Am. Chem. Soc. 132, 6872 (2010). 3. H. B. Xu, R. J. Hong, B. Ai, L. Zhuang, and H. Shen, Appl. Energ. 87, 3425 (2010). 4. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, Nano Lett. 10, 1979 (2010). 5. C. H. Chang, P. C. Yu, M. H. Hsu, P. C. Tseng, W. L. Chang, W. C. Sun, W. C. Hsu, S. H. Hsu, and Y. C. Chang, Nanotechnology 22, 095201 (2011). 6. H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, Energy Environ. Sci 4, 2863 (2011). 7. C. Y. Huang, D. Y. Wang, C. H. Wang, Y. T. Chen; Y. T. Wang, Y. T. Jiang, Y. J. Yang, C. C. Chen, and Y. F. Chen, ACSnano 10, 5849 (2010). 8. H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, Langmuir 26, 12855 (2010). 9. Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, Nanoscale 2, 2765 (2010). 10. L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, Adv. Energy Mater. 1, 506 (2011). 11. Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, J. Mater. Chem. 20, 10924 (2010). 12. J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, J. H. Lee, Opt. Express 18, A286, (2010). 13. H. Li, R. Jia, C. Chen,; Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, Appl. Phys. Lett. 98, 151116 (2011). 14. D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, Langmuir 25, 7769 (2009). 15. C. Chang, M. Hsu, P. Tseng, P. Yu, W. Chang, W. Sun, and W. Hsu, Opt. Express 19, A219 (2011). 16. J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um,; K. T. Park, M. S. Hyun, J. M. Yang, and J. H. Lee, Nanotechnology 21, 445303 (2010). 17. T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, Sol. Energy Mater. Sol. Cells 95, 18 (2011). 18. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, Sol. Energy Mater. Sol. Cells 93, 670 (2009). 19. A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. De Wolf, F. Zicarelli, and C. Ballif, Appl. Phys. Lett. 97, 183505 (2010). 20. D. Iencinella, E. Centurioni, R. Rizzoli, and F. Zignani, Sol. Energy Mater. Sol. Cells 87, 725 (2005). 21. M. Edwards, S. Bowden, U. Das, and M. Burrows, Sol. Energy Mater. Sol. Cells 92, 1373 (2008). 22. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, Appl. Phys. Lett. 73, 1991 (1998). Chapter 2 1 J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, Appl. Phys. Lett. 73, 1991 (1998). 2 B. Oregan, and M. Gratzel, Nature 353, 737 (1991). 3 A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Science 285, 692 (1999). 4 H. Hoppe, and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004). 5 J. F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, and R. P. Mertens, IEEE Trans. Electron Devices 46, 1948 (1999). 6 Z. Chen, P. Sana, J. Salami, and A. Rohatgi, IEEE Trans. Electron Devices 40, 1161 (1993). 7 E. Garnett, and P. Yang, Nano Lett. 10, 1082 (2010). 8 M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010). 9 P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, Sol. Energy Mater. Sol. Cells 70, 103 (2001). 10 J. Y. Huang, X. Wang, and Z. L. Wang, Nano Lett. 6, 2325 (2006). 11 Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, J. Mater. Chem. 20, 10924 (2010). 12 H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, Energy Environ. Sci 4, 2863 (2011). 13 F. Hui, W. Yin, Z. Jiahao, and Z. Jing, Nanotechnology 17, 3768 (2006). 14 S. H. Tsai, H. C. Chang, H. H. Wang, S. Y. Chen, C. A. Lin, S. A. Chen, Y. L. Chueh, and J.-H. He, ACS Nano 5, 9501 (2011). 15 H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, Opt. Express 20, A94 (2012). 16 H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, Langmuir 26, 12855 (2010). 17 K. Y. Lai, Y.-R. Lin, H.-P. Wang, and J.-H. He, CrystEngComm 13, 1014 (2011). 18 H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008). 19 J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, Appl. Phys. Lett. 95, 033102 (2009). 20 K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, and J. Zhu, Small 1, 1062 (2005). 21 T. C. Yang, T. Y. Huang, H. C. Lee, T. J. Lin, and T. J. Yen, J. Electrochem. Soc. 159, B104 (2012). 22 J. Xiao, L. Wang, X. Li, X. Pi, and D. Yang, Appl. Surf. Sci. 257, 472 (2010). 23 H. Li, R. Jia, C. Chen, Z. Xing, W. Ding, Y. Meng, D. Wu, X. Liu, and T. Ye, Appl. Phys. Lett. 98, 151113 (2011). 24 F. Hui, L. Xudong, S. Shuang, X. Ying, and Z. Jing, Nanotechnology 19, 255703 (2008). 25 D. Qi, N. Lu, H. Xu, B. Yang, C. Huang, M. Xu, L. Gao, Z. Wang, and L. Chi, Langmuir 25, 7769 (2009). 26 Y. Cao, A. Liu, H. Li, Y. Liu, F. Qiao, Z. Hu, and Y. Sang, Appl. Surf. Sci. 257, 7411 (2011). 27 Y. Hung, Jr., S.-L. Lee, K.-C. Wu, Y. Tai, and Y.-T. Pan, Opt. Express 19, 15792 (2011). 28 S. L. Cheng, C. H. Chung, and H. C. Lee, J. Electrochem. Soc. 155, D711 (2008). 29 X. Li, B. Tay, P. Miele, A. Brioude, and D. Cornu, Appl. Surf. Sci. 255, 7147 (2009). 30 D. H. Raguin, and G. M. Morris, Appl. Opt. 32, 2582 (1993). 31 R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, Opt. Express 17, 23058 (2009). 32 L. H. Lin, X. Z. Sun, R. Tao, Z. C. Li, J. Y. Feng, and Z. J. Zhang, J. Appl. Phys. 110, 073109 (2011). Chapter 3 1. C. Schmiga, H. Nagel, and J. Schmidt, Prog. Photovolt. Res. Appl. 14, 533 (2006). 2. S. Singh, F. Dross, N. E. Posthuma, and R. Mertens, Sol. Energy Mater. Sol. Cells 95, 1151 (2011). 3. T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, Sol. Energy Mater. Sol. Cells 95, 18 (2011). 4. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, Sol. Energy Mater. Sol. Cells 93, 670 (2009). 5. K. v. Maydell, E. Conrad, and M. Schmidt, Prog. Photovolt. Res. Appl. 14, 289 (2006). 6. A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. De Wolf, F. Zicarelli, and C. Ballif, Appl. Phys. Lett. 97, 183505 (2010). 7. H. Fujiwara, and M. Kondo, J. Appl. Phys. 101, 054516 (2007). 8. U. K. Das, M. Z. Burrows, M. Lu, S. Bowden, and R. W. Birkmire, Appl. Phys. Lett. 92, 063504 (2008). 9. A. Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Guerin, Z. C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, and C. Ballif, Appl. Phys. Lett. 99, 123506 (2011). 10. D. L. King, and M. E. Buck, in Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE 301, 303 (1991). 11. D. Iencinella, E. Centurioni, R. Rizzoli, and F. Zignani, Sol. Energy Mater. Sol. Cells 87, 725 (2005). 12. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, Prog. Photovolt. Res. Appl. 15, 415 (2007). 13. H. Angermann, L. Korte, J. Rappich, E. Conrad, I. Sieber, M. Schmidt, K. Hübener, and J. Hauschild, Thin Solid Films 516, 6775 (2008). 14. M. Edwards, S. Bowden, U. Das, and M. Burrows, Sol. Energy Mater. Sol. Cells 92, 1373 (2008). 15. Z. Jiang, Y. Dou, Y. Zhang, Y. Zhou, F. Liu, and M. Zhu, Chin. J. Chem. 30, 084010 (2009). 16. J. DaeYoung, K. ChanSeok, S. JunYong, L. Jeong Chul, C. Jun Sik, P. Sang Hyun, W. Jin-Suk, Y. Kyung Hoon, and S. Jinsoo, in Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, 000642 (2009). 17. L. Fesquet, S. Olibet, J. Damon-Lacoste, S. De Wolf, A. Hessler-Wyser, C. Monachon, and C. Ballif, in Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, 000754 (2009). 18. J. Zhao, A. Wang, P. Altermatt, and M. A. Green, Appl. Phys. Lett. 66, 3636 (1995). 19. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, Appl. Phys. Lett. 73, 1991 (1998). 20. J. Zhao, and M. A. Green, IEEE Trans. Electron Devices 38, 1925 (1991). 21. A. W. Smith, and A. Rohatgi, Sol. Energy Mater. Sol. Cells 29, 37 (1993). 22. A. Cuevas, and D. Macdonald, Solar Energy 76, 255 (2004). 23. R. A. Sinton, in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on 1022, 1028 (2003). 24. S. D. W. Michio Kondo, and Hiroyuki Fujiwara, in MRS Proceedings (2008). 25. S. De Wolf, and M. Kondo, J. Appl. Phys. 105, 103707 (2009). 26. S. De Wolf, S. Olibet, and C. Ballif, Appl. Phys. Lett. 93, 032101 (2008). 27. M. Z. Burrows, U. K. Das, R. L. Opila, S. De Wolf, and R. W. Birkmire, J. Vac. Sci. Technol., A 26, 683 (2008). 28. T. Koida, H. Fujiwara, and M. Kondo, Appl. Phys. Express 1, 041501 (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63787 | - |
| dc.description.abstract | 本文中,我們利用擁有寬頻與全向性光擷取之奈微米結構應用於矽基太陽能電池上以提升光伏特性,並且對其光電特性做詳細的討論。
首先,由微米金字塔以及奈米線陣列結合而成之階層結構成功製備於單晶矽晶圓上,此乃利用氫氧化鉀溶液非等向性蝕刻以及無遮罩濕式蝕刻技術製作而成。此奈微米複合結構展現出優良的光捕獲特性,在波長300奈米-1000奈米擁有極低的平均全反射(4.3%)。在1.5 AM的光照下,藉由此一階層表面結構應用於矽基太陽能電池,與拋光表面之元件相比其短路電流密度可從21.5 mA/cm2提升至28.2 mA/cm2,其轉換效率可由7.75%增加至10.47%。此第一部分研究之概念與技術將有助於下一世代的矽基太陽能電池之優化與發展。 最後,矽基異質接面太陽能電池具有達到超高光電轉換效率的潛力乃由於其較高的開路電壓,然而亦須仰賴表面結構於沉積非晶矽層之前,以增加光吸收於元件。在此,我們利用黃光微影術與氫氧化鉀溶液非等向性蝕刻製作出週期性倒金字塔結構於矽晶圓表面。相比於拋光與隨機生長的正向金字塔結構,此一倒金字塔結構在波長300奈米-1130奈米之寬頻帶中顯示出增強的光捕獲捉效應。在太陽能電池的應用上,以週期為10微米的倒金字塔結構製作在雙面的異質接面太陽能電池,其光電轉換效率可從10.38%大幅提升至14.58%,擁有604.5 mV的開路電壓,35.29 mA/cm2的短路電流密度,以及0.68的填充因子。其一顯著的提升可歸因於光在元件中吸收的增加以及沉積層鈍化的改善。此部分的研究證實了藉由表面結構的最佳化設計可有效改善矽基異質接面太陽能電池的光伏特性。 | zh_TW |
| dc.description.abstract | In this thesis, the broadband and omnidirectional light-harvesting scheme employing nano/microscale structures are introduced to Si solar cells for boosting the photovoltaic performances, and the photoelectric properties of the devices are discussed in detail.
First, a hierarchical structure consisting of micropyramids and nanowire arrays was fabricated on the mono-crystalline Si using a KOH anisotropic etching followed by the metal-assisted chemical etching process. The hierarchical structure shows excellent light-trapping properties in the wavelength region of 300–1000 nm, with the average reflectance of 4.3 %. Upon the application of the hierarchical Si surfaces, the current density of solar cells was increased from 21.5 mA/cm2 to 28.7 mA/cm2 and the conversion efficiency could be improved from 7.75 % to 10.47 % under 1.5 AM illumination. The concept and technique presented in this study should benefit the development of next generation of Si-based solar cells. Finally, Si heterojunction solar cells have potential for high conversion efficiencies owing to very high open-circuit voltages, yet this relies on optimized surface texturing for increasing the photon absorption effectively prior to amorphous silicon (a-Si:H) deposition. In this paper, the periodic inverted pyramid (IP) textures were performed on the wafer surfaces via photolithography followed by KOH anisotropic etching process. Compared to the polished and random upright pyramid-textured Si, the IP structures show the enhanced light-trapping properties over a wide spectrum ranging from 300 to 1130 nm. For the solar cells application, the double-sided heterojunction solar cells with 10 µm periodic IP structures yield an enhancement of conversion efficiency from 10.38% to 14.58% with an open-circuit voltage of 604.5 mV, a current density of 35.29 mA/cm2, and a fill factor of 0.68, which can be attributed to the increased light absorption in the devices and the improved passivation of the deposited films. The study proves a promising way to promote the photovoltaic performances of Si heterojunction solar cells by the design optimization of surface texturing. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:19:09Z (GMT). No. of bitstreams: 1 ntu-101-R99941054-1.pdf: 2998747 bytes, checksum: 2705e9db1bb6a38bfb65fe6ac16dd635 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書...I
致謝...II 摘要...III Abstract...IV Contents...VI List of Figures...VII Chapter 1 Introduction...1 1.1 Si Nanostructure Based Solar Cells...1 1.2 Si Heterojunction with Intrinsic Thin Layer Solar Cells...3 References...5 Chapter 2 Fabrication of Silicon Hierarchical Structures for Solar Cell Applications...8 2.1 Introduction...8 2.2 Experiments...11 2.3 Results and discussion...13 2.4 Summary...28 References...29 Chapter 3 Fabrication of Inverted Pyramid Structures On Crystalline Silicon Wafer for Heterojunction Solar Cell...32 3.1 Introduction...32 3.2 Experiments...35 3.3 Results and discussion...38 3.4 Summary...49 References...50 Chapter 4 Conclusion...53 Publication List...56 An-Cheng Li Curriculum Vitae...57 | |
| dc.language.iso | en | |
| dc.subject | 倒金字塔 | zh_TW |
| dc.subject | 非晶矽 | zh_TW |
| dc.subject | 異質接面 | zh_TW |
| dc.subject | 無遮罩濕式蝕刻 | zh_TW |
| dc.subject | 鈍化 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 光捕獲 | zh_TW |
| dc.subject | 矽基太陽能電池 | zh_TW |
| dc.subject | Light-trapping | en |
| dc.subject | Passivation | en |
| dc.subject | Inverted pyramid | en |
| dc.subject | Si solar cells | en |
| dc.subject | Amorphous silicon | en |
| dc.subject | Heterojunction | en |
| dc.subject | Metal-assisted chemical etching | en |
| dc.subject | Nanowire | en |
| dc.title | 利用擁有寬頻與全向性光擷取之奈微米結構於矽基太陽能電池之應用 | zh_TW |
| dc.title | Broadband and Omnidirectional Light-Harvesting Scheme Employing Nano/Microscale Structures for Si Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱天隆(Tien-Lung Chiu),徐文光(wen-Kuang Hsu),李敏鴻(Min-Hung Lee),詹逸民(I-Min Chan) | |
| dc.subject.keyword | 矽基太陽能電池,光捕獲,奈米線,無遮罩濕式蝕刻,異質接面,非晶矽,倒金字塔,鈍化, | zh_TW |
| dc.subject.keyword | Si solar cells,Light-trapping,Nanowire,Metal-assisted chemical etching,Heterojunction,Amorphous silicon,Inverted pyramid,Passivation, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
