Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63756
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允中
dc.contributor.authorI-Fang Chenen
dc.contributor.author陳怡方zh_TW
dc.date.accessioned2021-06-16T17:18:19Z-
dc.date.available2012-08-20
dc.date.copyright2012-08-20
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation王子定、蘇學波、陳堅強、高毓斌。1984。各栽植密度銀合歡之生長及地上部生物量。中華林學季刊。17(4):13-25。
王亞男、陳世銘、李允中、柯淳涵、周楚洋。2010。能源樹種選育與分析研究。行政院農業委員會林務局98農科-8.4.1-務-e3。臺灣大學生物資源暨農學院實驗林管理處。
王瑞閔。2006。台灣國有林地森林碳吸存估算方法之探討。碩士論文。台北:國立台灣大學森林環境暨資源學所。
中崗科技有限公司。2009。瑞士環境資料庫ecoinvent介紹。台灣:中崗科技有限公司。網址:http://www.ixon.com.tw/。上網日期:2009-08-21。
中國林業網。2009。林業百科:楊樹造林技術規程(河北省地方標準DB13/T654-2005)。中國:中國林業網。網址:http://www.chinaforestry.com.cn/。上網日期:2009-12-14。
甘偉航、胡大維、楊政川。1990。五種桉樹在東臺地區造林適應性初步試驗。林業試驗所研究報告季刊。5(2):99-109。
台灣省農林廳林務局。1995。第三次台灣森林資源及土地利用調查。初版,64-84。台北:台灣省林務局。
台灣電力公司。2010。97年度電力排放係數。 台灣:台灣電力公司。網址:http://www.taipower.com.tw/quickLink/co2.htm,上網日期:2010-04-27。
北京宏劍訊科軟體技術有限公司。2009。LCA生命週期體系專業評估軟件。大陸:北京宏劍訊科軟體技術有限公司。網址:http://www.hongcam.com.cn/。上網日期:2009-09-14。
行政院農業委員會林務局。2009。以森相許:獎勵平地景觀造林活動。台灣:行政院農委會林務局。網址:http://www.forest.gov.tw/。上網日期:2009-12-14。
行政院農業委員會林務局。2010。全台漂流木數據統計。台灣:行政院農業委員會林務局。網址:http://www.forest.gov.tw/。上網日期:2010-04-22。
江濤。1979。新品系銀合歡栽培法。豐年半月刊。29(23):14-15。
吳瑤階。1980。桉樹類之造林適應性及生長(1)。臺灣林業。6(9):20-22。
吳俊賢、林俊成、李國忠、陳溢宏、林麗貞、林瑞進。2005。森林能源作物之二氧化碳吸存效果與能源產出效率。臺大實驗林研究報告。19(1):43-53。
林子玉。1972。相對幹距應用在相思樹林分收穫預測之研究林分生長量查定方法與預測法之研究。中華林學季刊。5(3):73-84。
林國銓。1980。山黃麻生物量及養分含量之研究。中華林學季刊。13(2):77-85。
林裕仁。2008。森林減碳能力之推算方法。農政與農情。第193期:77-81。
胡大維、江濤、施文君。1980。銀合歡造林生產量之研究林試所試驗報告第335號 12 頁。
馬子斌、陳政靜、熊如珍、黃清吟、陳欣欣、翟思湧。1992。重要商用木材之一般性質。台灣省林業試驗所林業叢刊第1號 205 頁。
高毓斌、施文君、胡大維。1989。群狀栽植對銀合歡生長與生物量生產量之效應。中華林學季刊。22(4):55-63。
張又升。2002。建築物生命週期二氧化碳減量評估。博士論文。台南:國立成功大學建築研究所。
郭幸榮。2004。育林手冊。台灣:行政院農業委員會林務局出版。
陳莉坪。2008。台糖平地造林植林碳匯計畫設計文件之研究。碩士論文。台北:國立台灣大學森林環境暨資源學所。
張慶恩。1981。臺灣栽培桉樹之調查與研究。中華林學季刊。14(3):43-64。
許原瑞。1992。相思樹類之育苗與造林。現代育林。8(1):30-34。
游漢明、洪富文、陳正豐、程煒兒。2000。速生桉樹類的耐風育林。臺灣林業科學。15(1):61-69。
黃瓊儀。2003。人造纖維產品之生命週期評估研究。碩士論文。台南:國立成功大學環境工程研究所。
趙英、陳小斌、蔣昌順。2006。我國銀合歡研究進展。熱帶農業科學。26(4):55-63。
劉慎孝、林子玉。1968。台灣中南部相思樹林分收穫表及材積表。中興大學農學院森林學系 47 頁。
蔡家斌、孫照斌、陸瑞新。2002。相思樹木材乾燥特性及乾燥工藝初探。木材工業。16(6):25-30。
謝經發。1989。銀合歡育林之經濟效益。現代育林。4(2):55-56。
羅彗瑋。2006。商業部門溫室氣體排放量盤查說明。我國能源供需預測之分析。工業技術研究院。
Baldock, J., R. Smernik. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem 33: 1093-1109.
Bawagan, P. V., J. A. Semana. 1977. Utilization of Ipil-ipil for wood. In:Proceedings of International Consultation on Ipil-ipil Research. Sept. 1976, Manila. Los Banos, Philippines. 81-93pp.
Beer, T., T. Grant, R. Brown, J. Edwards, P. Nelson, H. Watson, and D. Williams. 2000. Life-cycle emissions analysis of alternative fuels for heavy vehicles. CSIRO Atmospheric Research report C/0411/1.1/F2 to the Australian Greenhouse Office.
Beer, T., T. Grant, R. Brown, J. Edwards, P. Nelson, H. Watson, and D. Williams. 2004. Life-cycle emissions analysis of fuels for light vehicles. CSIRO Atmospheric Research report HA93A-C837/1/F5.2E to the Australian Greenhouse Office.
Berglund, L. M., T. H. DeLucca, and O. Zackrisson. 2004. Activated carbon amendments to soil alters nitrification rates in Scots pine forests. Soil Biol. Biochem 36(12): 2067-2073.
BEST Energies. 2006. Illustrative slow pyrolysis process. Australia: BEST Energies, Inc. Available at: http://www.bestenergies.com/index.html. Accessed 25 February 2009.
Brewbaker, J. L. 1980. Giant Ieucaena energy tree garm; An Economic feasibility analysiss for the Island of Holokai, Hawaii. Hawaii Natural Energy Inst.
Burschel, P., E. Kursten, B. C. Larson, M. Weber. 1993. Present role of German forests and forestry in the national carbon budget and options to its increase. Water, Air & Soil Pollution 70:325-340.
Chan, K. Y., L. Van Zwieten, I. Meszaros, A. Downie, and S. Joseph. 2008. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research 46: 437-444.
Cheng, C. H., J. Lehmann, and M. H. Engelhard. 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 72(6): 1598-1610.
Clair Rogerio da Cruz, Graciela Ines Bolzon de Muniz, Jose Tarcisio Lima, Daniel Furtado Ferreira. 2009. APPLICATION OF STRESS WAVES TO ESTIMATE MOISTURE CONTENT IN Eucalyptus WOOD. Cerne, Lavras. 15(4):430-438.
Das, K. C., M. Garcia-Perez, B. Bibens, N. Melear. 2008. Slow pyrolysis of poultry litter and pine woody biomass: Impact of chars and bio-oils on microbial growth. Journal of Environmental Science and Health: Part A 43: 714-724.
Day, D., R. J. Evans, J. W. Lee, D. Reicosky. 2005. Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30: 2558-2579.
Demirbas, A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72: 243-248.
Demirbas, A. 2006. Production and characterization of bio-chars from biomass via pyrolysis. Energy Sources Part A 28: 413-422.
Frischknecht, R., N. Jungbluth et al. 2003. Implementation of Life Cycle Impact Assessment Methods. Final report ecoinvent 2000, Swiss Centre for LCI. Dubendorf, CH, www.ecoinvent.org. Accessed 17 April 2010.
Fushimi, C., K. Araki, Y. Yamaguchi, A. Tsutsumi. 2003. Effect of heating rate on steam gasification of biomass 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Industrial & Engineering Chemistry Research 42: 3929-3936.
Garnaut, R. 2008. The Garnaut Climate Change Review. ICambridge University Press, Port Melbourne, 680p. http://www.garnautreview.org.au/domino/Web_Notes/Garnaut/garnautweb.nsf
Glaser, B., J. Lehmann, W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoalsA review. Biol. Fertil. Soils 35: 219-230.
Halleux, H., S. Lassaux, R. Renzoni, A. Germain. 2008. Comparative Life Cycle Assessment of Two Biofuels. Ethanol from Sugar Beet and Rapeseed Methyl Ester. Int J LCA 13 (3): 184-190.
Heijungs, R., S. Suh. 2002. Computational structure of life cycle assessment., Kluwer Academic Publishing, Dordrecht. The Netherlands.
Hinkle, E. H. 1968. Eucalyptus in Taiwan. Quarterly Journal of Chinese Forestry 1(2): 87-98.
IEA. 2007. Fate of initial feedstock mass between products of pyrolysis processes. The International Energy Agency (IEA). Available at: http://www.iea.org/index.asp. Accessed 20 February 2009.
IPCC, Climate Change. 2007. Fourth Assessment Report. The Physical Science Basis. Available at: http://www.ipcc.ch/ipccreports/ar4-wg1.htm. Accessed 17 April 2010.
ISO (International Organization for Standardization). 2006. ISO 14040:2006(E) Environmental Management – Life Cycle Assessment – Principles andFramework.
Kim, S., B. E. Dale. 2005. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass and Bioenergy 29: 426-439.
Krull, E. S., C. W. Swanston, J. O. Skjemstad, and J. A. McGowan. 2006. Importance of charcoal in determining the age and chemistry of organic carbon in surface soils, Journal Of Geophysical Research, 111, G04001, doi:10.1029/2006JG000194.
Kuwagaki, H., K. Tamura. 1990. Aptitude of wood charcoal to a soil improvement and other. non-fuel use. In: Mitigation and adaptation strategies for global change.
McCarl, B. A., C. Peacocke, R. Chrisman, C. C. Kung, R. D. Sands. 2008. Economics of biochar production, utilization, and green house gas offsets. In: International biochar initiative, Newcastle, UK.
Lehmann, J., D. Kern, L. German, J. McCann, G. Martins, A. Moreira. 2003. Soil fertility and production potential. In Amazonian Dark Earths: Origin, Properties, Management; Lehmann, J., Kern, D. C.,Glaser, B.,Woods, W. I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands. pp 105-124.
Lehmann, J., S. Joseph. 2009. Biochar for Enviromental Management. 1st ed., 342-347. London:Earthscan.
Liang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'Neill, J. O. Skjemstad, J. Thies, F. J. Luizao, J. Petersen, and E. G. Neves. 2006. Black carbon increases cation exchange capacity in soils. SSSA J 70(5): 1719-1730.
Oevering, P., B. J. Matthews, S. M. Cragg, A. J. Pitman. 2001. Invertebrate biodeterioration ofmarine timbers above mean sea level along the coastlines ofEngland and Wales. International Biodeterioration & Biodegradation. 47:175-281.
Ogawa, M., Y. Okimori, F. Takahashi. 2006. Carbon sequestration by carbonization of biomass and forestation: three case studies. Mitigation and adaptation strategies for global change 11: 429-444.
Pietkainen, J., O. Kiikkila, H. Fritze. 2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89: 231– 242.
Roberts, K. G., B. A. Gloy, S. Joseph, N. R. Scott, J. Lehmann. 2010. Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. Environ. Sci. Technol. 44 (2): 827–833.
Rondon, M., J. Ramirez, J. Lehmann. 2005. Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration; March 21–24, Baltimore, MD. pp 208.
Ryu, C., V. N. Sharifi, J. Swithenbank. 2007. Waste pyrolysis and generation of storable char. International Journal of Energy Research 31: 177-191.
Seiler, W., and P. J. Crutzen. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change 2(3): 207-247.
Sheehan, J., V. Camobreco, J. Duffield, M. Graboski, and H. Shapouri. 1998. Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus: Final report. Golden, CO: National Renewable Energy Laboratory. Available at: www.nrel.gov/docs/legosti/fy98/24089.pdf. Accessed 23 December 2008.
Shinogi, Y., H. Yoshida, T. Koizumi, M. Yamaoka, T. Saito. 2002. Basic characteristics of low-temperature carbon products from waste sludge. Advances in Environmental Research 7: 661-665.
Shinogi, Y. 2004. Nutrient leaching from carbon products of sludge. In ‘ASAE/CSAE Annual International Meeting’. Paper No. 044063, Ottawa, Ontario, Canada.
SimaPro LCA software. 2009. Cumulative Energy Method. Methods library. Available at: http://www.pre.nl/. Accessed 29 November 2009.
Sohi, S., E. Loez-Capel, E. Krull, R. Bol. 2009. Biochar's roles in soil and climate change: A review of research needs. CSIRO Land and Water Science Report 05/09, 64 pp..
Steiner, C., W. G. Teixeira, J. Lehmann, T. Nehls, J. L. V. de Macedo, W. E. H. Blum, and W. Zech. 2007. Long‐term effects of manure, charcoal, and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 291(1‐2): 275-290.
Steiner, C., K. C. Das, M. Garcia, B. Forster, and W. Zech. 2008a. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia (51): 359–366.
Steiner, C., B. Glaser, W. G. Teixeira, J. Lehmann, W. E. H. Blum, and W. Zech. 2008b. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science 171(6): 893–899.
Tanaka, S. 1963. Fundamental study on wood carbonization. In: Bulletin of Experimental Forest of Hokkaido University.
Topoliantz, S., J. F. Ponge, and S. Ballof. 2005. Manioc peel and charcoal: A potential organic amendment for sustainable soil fertility in the tropics. Biol. Fert. Soils 41(1): 15-21.
Wardle, D. A., O. Zackrisson, and M. C. Nilsson. 1998. The charcoal effect in boreal forests: Mechanisms and ecological consequences. Oecologia 115(3): 419-426.
Warnock, D. D., J. Lehmann, T. W. Kuyper, and M. C. Rillig. 2007. Mycorrhizal responses to biochar in soil: Concepts and mechanisms. Plant Soil 300: 9‐20.
Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management 45: 651-671.
Yu, X.Y., G.G. Ying, R.S. Kookana. 2006. Sorption and desorption dehaviors of diuron in soils amended with charcoal. Journal of Agricultural and Food Chemistry 54: 8545-8550.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63756-
dc.description.abstract生物質經由慢速熱裂解可得到一種固態產物-生質碳(Biochar),經過此技術可以將大氣中的碳長期封存在生質碳中,並可以產生替代能源如合成氣、生質焦油,更可藉由將生質碳施放於土壤當中來提升土壤的肥沃度。本研究將以台灣發展生質碳系統的觀點,並以生命週期評估方法來分析生質碳的固碳貢獻度。研究中選出三種台灣生長期較短的能源樹種:銀合歡(三年生)、桉樹(六年生)、相思樹(十年生)作為慢速熱裂解的生質原料,此外也將漂流木之廢棄木材列入原料類別作評估。能源樹種從平地造林開始進行生命週期分析,漂流木則從蒐集木材開始分析。結果顯示將四種原料製成生質碳之生命週期過程中,淨溫室氣體排放量皆為負值,表示製造生質碳中所產生的能源和降低的溫室氣體皆可有效補償過程中的能源消耗和污染排放,達到正面的效益。其中平地造林能源樹種又以桉樹在固碳力和產生能源的表現最佳,以30年為輪作單位,種植桉樹每公頃可降低112公噸的等量二氧化碳排放並產生3,100 GJ的替代能源,其次為銀合歡的82公噸、2,500 GJ和相思樹的48公噸、1,300 GJ。而漂流木因數量龐大且估算過程不包含其生長過程,結果顯示每10萬公噸的漂流木可降低高達5,500公噸的溫室氣體並產生484 TJ的替代能源。其中也包含評估木材運送對能源的耗用和環境污染的計算。整體而言,生質原料製成生質碳將可提供一個有效的碳庫,並減少化石燃料的製造和使用,而又以使用廢棄生物質進行熱裂解對減緩環境衝擊的能力最為顯著。zh_TW
dc.description.abstractSlow pyrolysis offers an energetic efficiency for bio-energy production, and the soil application of biochar reduces greenhouse gas (GHG) emissions to a greater extent than when the biochar is used as fuel to offset fossil fuel emissions. Scenarios for biochar production were examined using a life-cycle assessment which is known as a “cradle to grave” approach. The purposes of this study are assessing the capability of GHG reduction in biochar system and the total energy generation during biochar production. The life cycle environmental performances of three different Taiwan trees (Leucaena leucocephala, Eucalyptus spp. and Acacia confusa) and the waste driftwoods were estimated. And the functional units of each system are 30-year period/ha and 10,000 tons of driftwoods. The effects of impact assessment were calculated by using LCA software – SimaPro program. All of the feedstock provides a positive energy generation and negative GHG emission. The cultivation of Eucalyptus spp. performs a better way to decrease GHG emission (112 ton CO2 eq) and fossil fuel consumption (3,100 GJ eq) due to its high generation of biomass. The driftwood system could reduce 5,500 ton CO2 eq and provide 484 TJ of substitution energy. The result shows that the bio-energy system with bio-energy and biochar production rather than solely for bio-energy production can efficiently mitigate the climate change by a great amount of GHG sequestration.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:18:19Z (GMT). No. of bitstreams: 1
ntu-101-R97631032-1.pdf: 739528 bytes, checksum: 1f3a6ec74d32845891712abbc22d225a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 ………………………………………………………………………………….i
中文摘要 ……………………………………………………………………………ii
Abstract …………………………………………………………………………...iii
圖目錄 ……………………………………………………………………………...vi
表目錄 ……………………………………………………………………………..vii
第一章 簡介…………………………………………………………………………1
1.1 研究背景……………………………………………………………………1
1.2 研究目的……………………………………………………………………3
第二章 文獻探討……………………………………………………………………4
2.1 育林造林作業………………………………………………………………4
2.2 林木固碳量評估……………………………………………………………5
2.3 生質碳………………………………………………………………………5
2.3.1 生質原料……………………………………………………………6
2.3.2 生質碳的製程………………………………………………………7
2.3.3 慢速熱裂解 (Slow pyrolysis)………………………..……….…8
2.3.4 生質碳的性質………………………………………………………9
2.3.5 土壤上之應用……………………………………………………..10
2.4 生命週期評估 (Life cycle assessment, LCA)………………………....12
2.4.1 生命週期基本架構………………………………………………..12
2.4.2 生命週期之應用…………………………………………………..14
2.4.3 生命週期分析軟體─SimaPro 7.1……………………………..…15
2.4.4 瑞士環境研究中心資料庫(ecoinvent database)………………16
第三章 研究材料與方法…………………………………………………………..18
3.1 生質碳製程之原物料選用………………………………………………..18
3.1.1 平地造林樹種……………………………………………………..18
3.1.2 漂流木蒐集………………………………………………………..19
3.2 生質碳生命週期評估……………………………………………………..19
3.2.1 目標與範疇訂定…………………………………………………..20
3.2.1.1平地造林生質碳系統………………………………………..20
3.2.1.2漂流木生質碳系統…………………………………………..21
3.2.2 資料蒐集盤查與分析……………………………………………..22
3.2.2.1平地造林生質碳系統數據盤查……………………………..22
3.2.2.2漂流木生質碳系統數據盤查………………………………..24
3.2.2.3肥料相關數據-造林施肥…………………………………….24
3.2.2.4生質碳系統肥料回饋………………………………………..25
3.2.3 生命週期衝擊評估………………………………………………..26
3.2.4 生命週期評估闡釋………………………………………………..28
第四章 結果與討論………………………………………………………………..29
4.1 溫室氣體排放計算………………………………………………………..29
4.1.1 造林生質碳系統…………………………………………………..29
4.1.2 漂流木生質碳系統………………………………………………..31
4.2 替代能源產量計算………………………………………………………..32
4.2.1 造林生質碳系統…………………………………………………..32
4.2.2 漂流木生質碳系統………………………………………………..34
4.3 與生質能源系統比較結果………………………………………………..35
4.4 不確定性分析……………………………………………………………..36
第五章 結論………………………………………………………………………..40
參考文獻 …………………………………………………………………………..43
附錄一、台灣溫室氣體排放量……………………………………………………...52
附錄二、IPCC 第四次調查報告-溫室氣體之GWP因子…………………………53
附錄三、常用能源之碳排放係數……………………………………….…………..54
dc.language.isozh-TW
dc.title台灣林木生質碳生產的生命週期比較評估zh_TW
dc.titleA Comparative Life Cycle Assessment of Woody Biochar Production in Taiwanen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳世銘,王義仲,柯淳涵
dc.subject.keyword生質碳,生命週期評估,環境衝擊,溫室氣體,生質能源,zh_TW
dc.subject.keywordLife cycle assessment,Biochar,Climate change,Bio-energy production,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2012-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
722.2 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved