請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63743完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡詩偉 | |
| dc.contributor.author | Han-Jen Liu | en |
| dc.contributor.author | 劉瀚仁 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:17:52Z | - |
| dc.date.available | 2017-09-17 | |
| dc.date.copyright | 2012-09-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-18 | |
| dc.identifier.citation | References
1. Christianzwiener, S.R., Tamaragrummt, Thomasglauner, Andfritzh, F., Drowning in Disinfection Byproducts? Assessing Swimming Pool Water. Environmental Science & Technology, 2007. 41(2). 2. Basden, K., Swimming pool and spa pool atmospheres. Clean Air and Environmental Quality, 2006. 40(2). 3. Clifford White, G., Handbook of chlorination. Van Nostrand Reinhold, 1972. 4. Li, J.a.E.R.B., Volatile Disinfection Byproduct Formation Resulting from Chlorination of Organic-Nitrogen Precursors in Swimming Pools. Environmental science & technology, 2007. 41(19): p. 6732-6739. 5. OSHA chemical sampling information, Chemical sampling information : Nitrogen Trichloride. 2007. 6. Brown, H.C. and N.R. De Lue, Organoboranes for synthesis. 12. The reaction of organoboranes with nitrogen trichloride. A convenient procedure for the conversion of alkenes into alkyl chloridesvia hydroborationi. Tetrahedron, 1988. 44(10): p. 2785-2792. 7. Holzwarth, G., Balmer, R. G. and Sony, L, The fate of chlorine and chloramines in cooling towers Henry's law constants for flashoff. . Water Res. , 1984. 18: p. 1421-1427. 8. Alfred Bernard, S.C., Claire de Burbure, Olivier Michel, and Marc Nickmilder, Chlorinated Pool Attendance, Atopy, and the Risk of Asthma during Childhood. Environmental Health Perspectives, 2006. 114(10): p. 1567-1573. 9. N Massin, G.H., D Ambroise, M He’ry, J P Toamain, G Hubert, M Dorotte, Bianchi, B., Respiratory symptoms and bronchial responsiveness in lifeguards exposed to nitrogen trichloride in indoor swimming pools. Occup Environ Med, 2007. 64: p. 75-81. 10. Barbee, S.J., Thackara, J.W. and Rinehart, W.E., Acute inhalation toxicology of nitrogen trichloride. Am. Ind. Hyg. Assoc. J., 1983. 44(2): p. 145-146. 11. Gagnaire, F., Azim, S., Bonnet, P., Hecht, G. and Hery, M., Comparison of the sensory irritation response in mice to chlorine and nitrogen trichloride. J. Appl. Toxicol., 1994. 14(6): p. 405-409. 12. Hery, M., Hecht, G., Gerber, J. M., Gender, J. C., Hubert, G., Rebuffaud, J., Exposure to Chloramines in the Atmosphere of Indoor Swimming Pools. The Annals of Occupational Hygiene, 1995. 39(4): p. 427-439. 13. A Bernard; S Carbonnelle; O Michel; S Higuet; C de Burbure; J-P Buchet; C Hermans; X Dumont ; Doyle, I., Lung hyperpermeability and asthma prevalence in schoolchildren: unexpected associations with the attendance at indoor chlorinated swimming pools. Occup. Environ. Med., 2003. 60: p. 385-394. 14. Hery, M., et al., Exposure to Chloraminies in a Green Salad Processing Plant. Ann Occup Hyg, 1998. 42(7): p. 437-451. 15. United States National Library of Medicine, Toxicology Data Network. 16. Pawliszyn, P.A.M.a.J., Time-weighted average sampling with solid-phase microextraction device: Implications for enhanced personal exposure monitoring to airborne pollutants. Analytical Chemistry, 1999. 71(8): p. 1513-1520. 17. J. Pawliszyn, Solid-Phase Microextraction - Theory and practice. . New York: Wiley-VCH, 1997. 18. J.A. Koziel and J. Pawliszyn, Air sampling and analysis of volatile organic compounds with solid phase microextraction. Journal of the Air & Waste Management Association, 2001. 51(2): p. 173-184. 19. Zenilda de Lourdes Cardeal, E.M.G., and F.V. Parreira, Analysis of volatile compounds in some typical Brazilian fruits and juices by SPME-GC method. Food Additives and Contaminants, 2005. 22(6): p. 508-513. 20. Pawliszyn, A.K.a.J., Time-weighted average sampling of volatile and semi-volatile airborne organic compounds by the solid-phase microextraction device. Journal of Chromatography A, 2000. 892(1-2): p. 455-467. 21. R. Batlle, A.C., and and U. Nilsson, Development of a personal isocyanate sampler based on DBA derivatization on solid-phase microextraction fibers. Fresenius Journal of Analytical Chemistry, 2001. 371(4): p. 514-518. 22. Arthur, C.L., J. Pawliszyn, Solid-Phase Microextraction with Thermal-Desorption Using Fused-Silica Optical Fibers. Analytical Chemistry, 1990. 62(19): p. 2145-2148. 23. Louch, D., S. Motlagh, and J. Pawliszyn, Dynamics of Organic-Compound Extraction from Water Using Liquid-Coated Fused-Silica Fibers. Analytical Chemistry, 1992. 64(10): p. 1187-1199. 24. Koziel, J., M.Y. Jia, and J. Pawliszyn, Air Sampling with Porous Solid-Phase Microextraction Fibers. Analytical Chemistry, 2000. 72(21): p. 5178-5186. 25. Fuller, E.N., P.D. Schettler, and J.C. Giddings, New Method for Prediction of Binary Gas-Phase Diffusion Coefficients. Industrial & Engineering Chemistry, 1966. 58(5): p. 18-27. 26. K. Kosaka, K.S., N. Kimura, Y. Kobayashi and M. Asami, Determination of trichloramine in drinking water using headspace gas chromatography/mass spectrometry. Water Science & Technology: Water Supply—WSTWS, 2010. 10(1): p. 23-29. 27. Shang, C.a.E.R.B.I., Differentiation and Quantification of Free Chlorine and Inorganic Chloramines in Aqueous Solution by MIMS. Environ. Sci. Technol., 1999. 33: p. 2218-2223. 28. EPA method 4500-Cl F Standard methods for the examination of water and waste water 20th edition. 1999. 29. Liu, Y.-H., Passive Air Sampling for Trichloramine by Solid-Phase Microextraction, in Institute of Environmental Health.2011, NTU. 30. Lord, H. and J. Pawliszyn, Evolution of solid-phase microextraction technology. Journal of Chromatography A, 2000. 885(1–2): p. 153-193. 31. United States Environmental Protection Agency, 1997. 32. C.J.O. Childress, W.T.F., and B.F. Connor, New Reporting Procedures Based on Long-Term Method Detection Levels and Some Considerations for Interpretations of Water-Quality Data Provided by the U.S. Geological Survey National Water Quality Laboratory, 1999, U.S. GEOLOGICAL SURVEY: Reston, Virginia. 33. Daubert, T.E., R.P. Danner, Physical and Thermodynamic properties of Pure Chemicals Data Compilation. Washington, D.C. Taylor and Francis, 1989. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63743 | - |
| dc.description.abstract | 三氯胺是一個具有高揮發性的消毒副產物。在游泳池環境中,它可能會由來自人體的有機氮源與氯反應而生成。文獻資料顯示,兒童和成年人均有可能因為暴露三氯胺而導致相關的急慢性健康效應。評估空氣中三氯胺濃度的方法中,現行常用的方法需要使用採樣幫浦,並且過程包含極為複雜的樣本前處理及分析流程,使得三氯胺的暴露評估相當不便。而另一方面,固相微萃取(SPME)的方法則有相對較多的使用優點,因此,本研究的目的即為開發一以SPME做為採樣工具並搭配動態非平衡系統的三氯胺採樣方法。
三氯胺的製備是由混和次氯酸鈉與氯化銨而成。在動態非平衡氣體產生系統中,氯胺氣流會通過洗滌瓶來去除可能帶來干擾的化學物質,例如一、二氯胺。通過的三氯胺氣流會被導入暴露腔中進行接下來的採樣動作。在本研究中,我們以兩種採樣方法進行分析。第一種是以固相微萃取技術(SPME)搭配纖維上衍生反應做三氯胺的採樣分析。首先會在纖維上裹附衍生試劑-環己烯,接著再放入動態暴露腔中進行三氯胺採樣,衍生物-一氯環己烷便會在纖維上生成。第二種方法則是以SPME做三氯胺的直接暴露萃取。兩種方法均以氣相層析質譜儀作為後續的分析儀器。 實驗發現Carboxen/PDMS SPME纖維具有最好的萃取效率,並能最穩定地保存纖維上的分析物。在非平衡狀態下分別進行有無衍生反應的三氯胺採樣,經不同的暴露量值(濃度×時間)的環境條件測試,所計算得到的實驗採樣率分別為:7.93×10-6 cm3/s(有衍生)及0.1032 cm3/s(無衍生)。 此研究結果顯示,以動態非平衡暴露系統進行SPME的三氯胺採樣之方法提供了未來應用於偵測游泳池空氣品質的潛在可行辦法。然而,本研究方法應用於低環境濃度下可能有偵測敏感度下降的限制,未來需要更多低濃度環境的採樣率驗證。 | zh_TW |
| dc.description.abstract | Nitrogen trichloride (trichloramine; NCl3) is a highly volatile disinfection by-product. In swimming pools, it is possibly formed when organic nitrogen sources from visitors react with chlorine. Acute and chronic health effects have been observed in both children and adults exposed to NCl3. To monitor the concentrations of NCl3 in air, current available method employed sampling pump and required complicated sample preparation and analysis procedure which makes it uneasy to assess the exposures. On the other hand, solid phase microextraciton (SPME) presents many advantages over conventional analytical methods. The aim of this research was then to develop a sampling method for NCl3 under nonequilibrium condition based on the technique of SPME.
NCl3 was prepared by mixing sodium hypochlorite with ammonium chloride and was further injected into the designed gas generation system. The air flow was then washed in scrubbers to trap the potential interfering compounds, such as mono- and dichloramine, which might also be formed in the reaction. Afterwards, the air flow was directed into the sampling chamber. There were two sampling approaches. The first was conducted using on-fiber derivatization. SPME fiber, which was first coated with cyclohexene, was exposed to NCl3 to perform on-fiber derivatization. Chlorocyclohexane was then formed as the derivative. The second approach was to sample trichloramine directly using SPME fiber. Both approaches were followed by the analysis with gas chromatography/mass spectrometry. It was observed that Carboxen/PDMS SPME fiber provided the best extraction efficiency with the highest sample-holding stability. The sampling of NCl3 under nonequilibrium condition with/without on-fiber derivatization was performed. Several magnitude of exposure (NCl3 concentration × sampling time) were tested and the experimental sampling rates of NCl3 were found as follows, 7.93×10-6 cm3/s (with on-fiber derivatization) and 0.1032 cm3/s (without on-fiber derivatization). The designed method demonstrated the potential of applying SPME technique under non-equilibrium condition for NCl3 sampling which could be applied in monitoring the air quality of swimming pools in the future. However, there is limitation such as the decreasing of detection sensitivity under low environmental concentration. Further validations on the sampling rates under low NCl3 concentration should be performed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:17:52Z (GMT). No. of bitstreams: 1 ntu-101-R99844010-1.pdf: 1718172 bytes, checksum: 82ea41fc595ec6224c99f28c65db07dd (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III ABSTRACT V TABLE OF CONTENTS VII LIST OF FIGURES X LIST OF TABLES XII CHAPTER 1. INTRODUCTION 13 1.1. DISINFECTION BYPRODUCTS 13 1.2. TRICHLORAMINE 14 1.3. IMPORTANCE OF TRICHLORAMINE 17 1.4. SAMPLING AND ANALYSIS FOR TRICHLORAMINE 20 1.5. SPME TECHNIQUE 21 1.6. RAPID AIR SAMPLING – INTERFACE CALIBRATION THEORY 23 CHAPTER 2. RESEARCH OBJECTIVES AND STRUCTURE 26 2.1. RESEARCH OBJECTIVES 26 2.2. RESEARCH STRUCTURE 27 2.2.1. With derivatization 27 2.2.2. Without derivatization 28 CHAPTER 3. MATERIALS AND METHODS 29 3.1. INSTRUMENTS AND REAGENTS 29 3.2. INSTRUMENTAL ANALYSIS 30 3.3. TRICHLORAMINE SOLUTION 31 3.3.1. Synthesis 31 3.3.2. Standard method DPD Ferrous Titrimetric Method (DPD/FAS) 31 3.4. EXPOSURE SYSTEM 33 3.4.1. Setup of the system 33 3.4.2. Injection rate of the syringe pump 33 3.4.3. Trichloramine gas dynamic exposure system 34 3.5. DYNAMIC SAMPLING OF TRICHLORAMINE WITH ON-FIBER DERIVATIZATION 35 3.5.1. SPME fiber 35 3.5.2. On-Fiber Derivatization 35 3.5.3. Derivatizing agent stock solution 36 3.5.4. Loading derivatizing agent 36 3.5.5. Linear range and precision 37 3.5.6. Method detection limit (MDL) 37 3.5.7. Sampling rate 38 3.6. DYNAMIC SAMPLING OF TRICHLORAMINE WITHOUT DERIVATIZATION 39 3.6.1. SPME fiber 39 3.6.2. Linear range and precision 39 CHAPTER 4. RESULTS AND DISCUSSIONS 40 4.1. TRICHLORAMINE SYNTHESIS 40 4.2. STABILITY OF TRICHLORAMINE SOLUTION 41 4.3. DYNAMIC SAMPLING OF TRICHLORAMINE WITH ON-FIBER DERIVATIZATION 42 4.3.1. Derivatizing agent calibration curve 42 4.3.2. Adsorbing derivatizing agents 42 4.3.3. Linearity of the derivative 43 4.3.4. Detection limit 43 4.3.5. Desorption efficiency of the derivative 44 4.3.6. Storage of the derivative 44 4.3.7. Identification of derivatization reaction 44 4.3.8. Derivatization reaction in dynamic exposure system 45 4.3.9. Determination of Sampling rate 46 4.4. DYNAMIC SAMPLING OF TRICHLORAMINE WITHOUT DERIVATIZATION 48 4.4.1. Trichloramine calibration curve 48 4.4.2. SPME fiber selection 48 4.4.3. Injection temperature and desorption efficiency 49 4.4.4. Sampling in dynamic exposure system 49 CHAPTER 5. CONCLUSION 51 REFERENCES 54 | |
| dc.language.iso | en | |
| dc.subject | 環己烯 | zh_TW |
| dc.subject | 三氯胺 | zh_TW |
| dc.subject | 固相微萃取 | zh_TW |
| dc.subject | 動態非平衡採樣 | zh_TW |
| dc.subject | 一氯環己烷 | zh_TW |
| dc.subject | solid-phase microextraction | en |
| dc.subject | trichloramine | en |
| dc.subject | cychlohexene | en |
| dc.subject | chlorocyclohexane | en |
| dc.subject | non-equilibrium sampling | en |
| dc.subject | solid-phase microextraction | en |
| dc.subject | trichloramine | en |
| dc.subject | cychlohexene | en |
| dc.subject | chlorocyclohexane | en |
| dc.subject | non-equilibrium sampling | en |
| dc.title | 以固相微萃取技術搭配動態非平衡暴露系統進行空氣中三氯氨採樣之方法開發 | zh_TW |
| dc.title | Sampling Trichloramine in Air by Solid-Phase Microextraction under Nonequilibrium Condition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林嘉明,陳美蓮 | |
| dc.subject.keyword | 三氯胺,環己烯,一氯環己烷,動態非平衡採樣,固相微萃取, | zh_TW |
| dc.subject.keyword | trichloramine,cychlohexene,chlorocyclohexane,non-equilibrium sampling,solid-phase microextraction, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-18 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
