Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6373
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu),丁詩同(Shih-Torng Ding)
dc.contributor.authorI-Chen Koen
dc.contributor.author葛奕辰zh_TW
dc.date.accessioned2021-05-16T16:27:27Z-
dc.date.available2013-02-01
dc.date.available2021-05-16T16:27:27Z-
dc.date.copyright2013-02-01
dc.date.issued2013
dc.date.submitted2013-01-29
dc.identifier.citationBaddoo, M., Hill, K., Wilkinson, R., Gaupp, D., Hughes, C., Kopen, G. C. and Phinney, D. G. 2003. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. Journal of cellular biochemistry 89: 1235-1249.
Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Quinn, G., Okochi, H. and Ochiya, T. 2007. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 46: 219-228.
Bataller, R., and D. A. Brenner. 2005. Liver fibrosis. The Journal of clinical investigation 115: 209-218.
Bianco, P., M. Riminucci, S. Gronthos, and P. G. Robey. 2001. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19: 180-192.
Bittner, R. E., Schofer, C., Weipoltshammer, K., Ivanova, S., Streubel, B., Hauser, E., Freilinger, M., Hoger, H., Elbe-Burger, A. and Wachtler, F. 1999. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anatomy and embryology 199: 391-396.
Bjorklund, L. M., Sanchez-Pernaute, R., Chung, S., Andersson, T., Chen, I. Y., McNaught, K. S., Brownell, A. L., Jenkins, B. G., Wahlestedt, C., Kim, K. S. and Isacson, O. 2002. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proceedings of the National Academy of Sciences of the United States of America 99: 2344-2349.
Boeker, K. H., Haberkorn, C. I., Michels, D., Flemming, P., Manns, M. P. and Lichtinghagen, R.2002. Diagnostic potential of circulating TIMP-1 and MMP-2 as markers of liver fibrosis in patients with chronic hepatitis C. Clinica chimica acta; International Journal of Clinical Chemistry 316: 71-81.
Campagnoli, C., Roberts, I. A.,Kumar, S., Bennett, P. R., Bellantuono, I. and Fisk, N. M. 2001. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98: 2396-2402.
Caplan, A. I. 1991. Mesenchymal stem cells. Journal of orthopaedic research : Official Publication of the Orthopaedic Research Society 9: 641-650.
Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. 2007. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25: 2739-2749.
Chan, S. L., Choi, M., Wnendt, S., Kraus, M., Teng, E., Leong, H. F. and Merchav, S. 2007. Enhanced in vivo homing of uncultured and selectively amplified cord blood CD34+ cells by cotransplantation with cord blood-derived unrestricted somatic stem cells. Stem Cells 25: 529-536.
Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M. and Chopp, M. 2001. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke; A Journal of Cerebral Circulation 32: 1005-1011.
Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Grisanti, S. and Gianni, A. M. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838-3843.
Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D. and Jorgensen, C. 2003. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837-3844.
Dor, Y., J. Brown, O. I. Martinez, and D. A. Melton. 2004. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429: 41-46.
Evans, M. J., and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154-156.
Fang, D., Seo, B. M., Liu, Y., Sonoyama, W., Yamaza, T., Zhang, C., Wang, S. and Shi, S. 2007. Transplantation of mesenchymal stem cells is an optimal approach for plastic surgery. Stem Cells 25: 1021-1028.
Hoehn, M., Kustermann, E., Blunk, J., Wiedermann, D., Trapp, T., Wecker, S., Focking, M., Arnold, H., Hescheler, J., Fleischmann, B. K., Schwindt, W. and Buhrle, C. 2002. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proceedings of the National Academy of Sciences of the United States of America 99: 16267-16272.
Hong, S. H., Gang, E. J., Jeong, J. A., Ahn, C., Hwang, S. H., Yang, I. H., Park, H. K., Han, H. and Kim, H. 2005. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochemical and Biophysical Research Communications 330: 1153-1161.
In 't Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., Noort, W. A., Claas, F. H., Willemze, R., Fibbe, W. E. and Kanhai, H. H. 2003. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102: 1548-1549.
Koc, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I. and Lazarus, H. M. 2000. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of clinical oncology : Official Journal of the American Society of Clinical Oncology 18: 307-316.
Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P. and Lee, O. K. 2004. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40: 1275-1284.
Menon, L. G., Picinich, S., Koneru, R., Gao, H., Lin, S. Y., Koneru, M., Mayer-Kuckuk, P., Glod, J. and Banerjee, D. 2007. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25: 520-528.
Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T. and Kaneda, Y. 2006. Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. Journal of Atherosclerosis and Thrombosis 13: 77-81.
Parviz, F., Matullo, C., Garrison, W. D., Savatski, L., Adamson, J. W., Ning, G., Kaestner, K. H., Rossi, J. M., Zaret, K. S. and Duncan, S. A. 2003. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nature Genetics 34: 292-296.
Peters, T., Jr. 1985. Serum albumin. Advances in protein chemistry 37: 161-245.
Phinney, D. G., G. Kopen, R. L. Isaacson, and D. J. Prockop. 1999. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. Journal of Cellular Biochemistry 72: 570-585.
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. and Marshak, D. R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
Recknagel, R. O. 1967. Carbon tetrachloride hepatotoxicity. Pharmacological Reviews 19: 145-208.
Ruhnke, M., Ungefroren, H., Zehle, G., Bader, M., Kremer, B. and Fandrich, F. 2003. Long-term culture and differentiation of rat embryonic stem cell-like cells into neuronal, glial, endothelial, and hepatic lineages. Stem Cells 21: 428-436.
Saito, T., J. E. Dennis, D. P. Lennon, R. G. Young, and A. I. Caplan. 1995. Myogenic Expression of Mesenchymal Stem Cells within Myotubes of mdx Mice in Vitro and in Vivo. Tissue Engineering 1: 327-343.
Sakaida, I., Terai, S., Yamamoto, N., Aoyama, K., Ishikawa, T., Nishina, H. and Okita, K. 2004. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 40: 1304-1311.
Sanchez-Ramos, L., and A. M. Kaunitz. 2000. Misoprostol for cervical ripening and labor induction: a systematic review of the literature. Clinical Obstetrics and Gynecology 43: 475-488.
Schaffler, A., and C. Buchler. 2007. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 25: 818-827.
Schmidt, C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., Sharpe, M., Gherardi, E. and Birchmeier, C. 1995. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373: 699-702.
Schwartz, R. E., Reyes, M., Koodie, L., Jiang, Y., Blackstad, M., Lund, T., Lenvik, T., Johnson, S., Hu, W. S. and Verfaillie, C. M. 2002. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. The Journal of Clinical Investigation 109: 1291-1302.
Sgodda, M., Aurich, H., Kleist, S., Aurich, I., Konig, S., Dollinger, M. M., Fleig, W. E. and Christ, B. 2007. Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Experimental Cell Research 313: 2875-2886.
Sheweita, S. A., M. Abd El-Gabar, and M. Bastawy. 2001. Carbon tetrachloride-induced changes in the activity of phase II drug-metabolizing enzyme in the liver of male rats: role of antioxidants. Toxicology 165: 217-224.
Slater, T. F., and B. C. Sawyer. 1971. The stimulatory effects of carbon tetrachloride on peroxidative reactions in rat liver fractions in vitro. Inhibitory effects of free-radical scavengers and other agents. The Biochemical Journal 123: 823-828.
Sun, Y., Chen, L., Hou, X. G., Hou, W. K., Dong, J. J., Sun, L., Tang, K. X., Wang, B., Song, J., Li, H. and Wang, K. X. 2007. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal 120: 771-776.
Takahara, T., Furui, K., Yata, Y., Jin, B., Zhang, L. P., Nambu, S., Sato, H., Seiki, M. and Watanabe, A. 1997. Dual expression of matrix metalloproteinase-2 and membrane-type 1-matrix metalloproteinase in fibrotic human livers. Hepatology 26: 1521-1529.
Thomson, J. A. , Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147.
Tropel, P., Noel, D., Platet, N., Legrand, P., Benabid, A. L. and Berger, F. 2004. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental Cell Research 295: 395-406.
Weber, L. W., M. Boll, and A. Stampfl. 2003. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Critical Reviews in Toxicology 33: 105-136.
Westin, J., L. M. Lagging, R. Wejstal, G. Norkrans, and A. P. Dhillon. 1999. Interobserver study of liver histopathology using the Ishak score in patients with chronic hepatitis C virus infection. Liver 19: 183-187.
Zhao, D. C., Lei, J. X., Chen, R., Yu, W. H., Zhang, X. M., Li, S. N. and Xiang, P. 2005. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World Journal of Gastroenterology : WJG 11: 3431-3440.
Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. and Hedrick, M. H. 2002. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell 13: 4279-4295.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6373-
dc.description.abstract慢性肝病為國人十大死因之一,其可能原因為病毒性肝炎、酒精或藥物濫用、以及飲食習慣。肝纖維化是慢性肝病惡化必經之過程,過去研究指出肝纖維化可逆轉,如何找出有效的治療方式也成為熱門研究。許多文獻證實骨髓間葉幹細胞(BM-MSCs)在肝纖維化動物模型上之治療潛力。脂肪間葉幹細胞(AD-MSCs)為另一類型之成體幹細胞,其擁有與骨髓間葉幹細胞相似之表面抗原表現以及轉分化潛能,由於其分離過程之侵入性小於其他細胞來源,AD- MSCs在近期的再生醫學研究中極具吸引力。
本試驗自紅螢光蛋白轉基因豬脂肪組織中分離並純化出具有多分化潛能之脂肪幹細胞AD-MSCs,經過流式細胞儀分析,證實其表現與間葉幹細胞相似之表面抗原CD29、CD44與CD90,並可在體外經誘導分化為成骨細胞、軟骨細胞、脂肪細胞以及肝臟細胞,此外,AD-MSCs穩定表現紅色螢光蛋白DsRed,有利於體內試驗之後續追蹤,此結果使其在再生醫學以及細胞治療上極具應用價值。為在動物試驗中測試AD-MSCs是否具治療肝纖維化之潛能,本試驗採用八週齡之ICR公鼠,給予灌食四氯化碳溶液四週後,小鼠血清中GOT、GPT以及ALB顯著高於控制組 (P<0.05)。此外,為增加AD-MSCs遷移入肝臟組織間之效率,以立體培養之方式將細胞培養成不同大小之立體團塊 (sphere),並分為四十微米以下、介於四十至七十微米、七十微米以上以及未經立體培養之懸浮細胞等四組,經由肝門靜脈注射技術,以最直接之方式將脂肪幹細胞及其團塊移植入小鼠體內 (每隻小鼠1x106細胞),使其隨血流立即流經肝臟,以期能在治療效果上有所突破。研究結果顯示,經過細胞移植手術兩週後,小鼠血清中GOT、GPT及ALB比起控制組顯著下降 (P<0.05),細胞移植手術四週後,取試驗小鼠肝臟組織,以梅森氏三色染色法標定其肝臟組織病理切片中之纖維化組織,發現接受細胞移植之組別其肝臟組織中纖維化傷疤含量明顯減少,而羥脯胺酸含量檢測結果也支持前述試驗之發現,但在各項數值上,並未因細胞團塊大小不同而有顯著差異,其結果與前人使用骨髓間葉幹細胞團塊所得之結果不甚相同。
綜上所述,本試驗結果證明豬脂肪幹細胞確實有治療小鼠肝纖維化之潛能,並提供未來再生醫學研究發展之新方向,然而AD-MSCs之治療機制與細胞後續之命運尚待釐清,若能有更進一步之研究成果,相信在不久之將來,此一研究能造福許許多多為肝臟疾病所苦之患者
zh_TW
dc.description.abstractChronic liver disease, which has reached the top 10 death causes for the past decades in Taiwan, might be caused by viral hepatitis, alcohol or drug abuse and diet preference. Liver fibrosis is the ineludible process of chronic liver disease deterioration. However, previous reports mentioned that liver fibrosis might be attenuated by stem cell therapy. Bone marrow-derived mesenchymal stem cells (BM-MSCs) were used in the previous study, which their therapeutic potential in a chemical induced liver fibrosis animal model had been demonstrated. The adipose-derived mesenchymal stem cell (AD-MSC) is another type of somatic stem cells which shares several characteristics with BM-MSC. Due to its smaller invasion in collection process compare with acquiring cells from the bone marrow, the AD-MSCs became attractive in regenerative medicine.
In this study, we isolated AD-MSCs with multipotency from adipose tissue and performed mesenchymal stem cells surface antigen CD29, CD44 and CD90 analysis by flowcytometry. Besides, AD-MSCs could differentiate into osteocytes, chondrocytes, adipocytes and hepatocytes in vitro, suggesting their advantages to be applied to clinical plastic and reconstructed surgery. To assess the potential of AD-MSCs to ameliorate liver fibrosis in vivo, AD-MSCs were isolated from dorsal adipose tissue of transgenic pigs which globally express fluorescent protein DsRed, for further examination. To generate liver fibrosis models, male ICR mice were treated with CCl4 via oral gavage for four weeks, and the levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and albumin (ALB) in their serum were higher than the control group (P<0.05) following chemical induction. To provide the transplanted AD-MSCs a massive affinity that could easily located in the liver after portal vein injection, the AD-MSCs were cultured into advanced three dimensional spheres and were separated into three groups according to the diameter of the cell spheres. AD-MSCs spheres with diameter below 40μm, 40~70μm, over 70μm and single cells were injected via portal vein (1x106 cells/mouse) of transplanted mice with liver fibrosis, respectively. Two weeks after AD-MSCs transplantation, the serum GOT, GPT and ALB of recipient mice in AD-MSCs-injected groups were significantly decreased when compared with mice in the saline-injected group (P<0.05). Additionally, the fibrotic tissues were evaluated by Masson's trichrome staining at 4 weeks after cell transplantation. The shrinkage of fibrotic area was observed in AD-MSCs-injected groups. The tissue repairing effects were also confirmed by hydroxyproline content analysis. However, there was no significant difference between single cells and cell spheres transplantation, the exhibited result indicate the divergence with previous study that BM-MSCs displayed better outcomes in sphered structure.
Overall, our results provided the intriguing implication that porcine AD-MSCs can ameliorate liver fibrosis in mice, aiming to provide insight into future development of regenerative medicine. However, the therapeutic mechanisms and cell fates in transplanted AD-MSCs still need to be explored.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:27:27Z (GMT). No. of bitstreams: 1
ntu-102-R99626013-1.pdf: 2126470 bytes, checksum: bb5d70e75d0f543011c12f441332e195 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents頁次
口試委員審定書…………………………………………………………………………...
謝誌 1
中文摘要 2
ABSTRACT 4
目次 6
圖次 8
第1章 緒論 10
第2章 文獻檢討 11
2.1 肝臟之構造與功能 11
2.1.1 肝臟解剖構造 11
2.1.2 肝臟之生理功能 13
2.2 肝臟疾病與傳統治療方式 14
2.2.1 猛爆性肝炎 (hepatitispage, or acute fulminating hepatitis) 14
2.2.2 急性肝炎與慢性肝炎 (acute and chronic hepatitis) 14
2.2.3 肝纖維化 (liver fibrosis) 15
2.3 幹細胞簡介 17
2.3.1 幹細胞之分類 17
2.3.2 幹細胞之增生模式 18
2.3.3 間葉幹細胞 (mesenchymal stem cells, MSCs) 18
2.3.4 脂肪幹細胞 20
2.4 四氯化碳介紹 20
第3章 試驗研究 21
3.1 紅色螢光蛋白質轉基因豬之脂肪幹細胞分離與純化 21
3.1.1 前言 21
3.1.2 材料與方法 22
3.1.3 結果與討論 25
3.2 紅色螢光蛋白轉基因豬脂肪幹細胞誘導分化為類肝臟細胞之研究 27
3.2.1 前言 27
3.2.2 材料與方法 28
3.2.3 結果與討論 30
3.3 肝纖維化小鼠模式之建立及檢測 34
3.3.1 前言 34
3.3.2 材料與方法 35
3.3.3 結果與討論 37
3.4 異種移植 –豬脂肪幹細胞應用於改善小鼠肝纖維化之可行性探討 45
3.4.1 前言 45
3.4.2 材料與方法 46
3.4.3 結果與討論 53
第4章 綜合討論 65
第5章 結論 67
第6章 未來展望 68
參考文獻 69
dc.language.isozh-TW
dc.title豬脂肪幹細胞應用於異種移植改善小鼠肝纖維化之研究zh_TW
dc.titleThe Potential of Porcine Adipose-Derived Stem Cells for Xeno-Transplantation to Improve Liver Fibrosis in Miceen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭登貴(Winston T.K. Cheng),劉逸軒(I-Hsuan Liu),李宣書(Hsuan-Shu Lee)
dc.subject.keyword肝纖維化,異種移植,豬脂肪幹細胞,zh_TW
dc.subject.keywordLiver fibrosis,xeno- transplantation,porcine adipose-derived mesenchymal stem cells,en
dc.relation.page75
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-01-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf2.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved