Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63730
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor趙本秀(Pen-Hsiu Chao)
dc.contributor.authorHsiang-Yi Hsuen
dc.contributor.author徐向儀zh_TW
dc.date.accessioned2021-06-16T17:17:30Z-
dc.date.available2013-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation1. Woo, S.L., et al., Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res, 1999(367 Suppl): p. S312-23.
2. Murray, M.M., Current status and potential of primary ACL repair. Clin Sports Med, 2009. 28(1): p. 51-61.
3. Lee, C.H., et al., Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005. 26(11): p. 1261-70.
4. Amiel, D.B., E.; Akeson, W., Ligament structure, chemistry and physiology. In Knee Ligaments: Structure, Function, Injury and Repair, 1990.
5. Camelliti, P., T.K. Borg, and P. Kohl, Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res, 2005. 65(1): p. 40-51.
6. Franchi, M., et al., Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps. Journal of Anatomy, 2010. 216(3): p. 301-309.
7. A. Hiltner, J.J.C., E.Baer, Mechanical propertiesof biological polymers. Annual Reviews, 1985. 15: p. 455.
8. Lake, S.P., et al., Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J Orthop Res, 2009. 27(12): p. 1596-602.
9. Hurschler, C., P.P. Provenzano, and R. Vanderby, Jr., Application of a probabilistic microstructural model to determine reference length and toe-to-linear region transition in fibrous connectivetissue. J Biomech Eng, 2003. 125(3): p. 415-22.
10. Danto, M.I. and S.L. Woo, The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res, 1993. 11(1): p. 58-67.
11. Hurschler, C., P.P. Provenzano, and R. Vanderby, Application of a Probabilistic
Microstructural Model to Determine Reference Length and Toe-to-Linear Region Transition in Fibrous Connective Tissue. Journal of Biomechanical Engineering, 2003. 125(3): p. 415.
12. <Time-dependent Increases in Type-III Collagen Gene Expression in Medial
Collateral Ligament Fibroblasts under Cyclic Strain.pdf>.
13. Webb, K., et al., Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane 37 constructs. J Biomech, 2006. 39(6): p.1136-44.
14. Kim, S.G., et al., Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct, 2002. 27(3): p. 139-44.
15. Sawaguchi, N., et al., Effect of cyclic three-dimensional strain on cell
proliferation and collagen synthesis of fibroblast-seeded chitosan-hyaluronan hybrid polymer fiber. J Orthop Sci, 2010. 15(4): p. 569-77.
16. Sarasa-Renedo, A., V. Tunc-Civelek, and M. Chiquet, Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain. Exp Cell Res, 2006. 312(8): p. 1361-70.
17. Li, F., et al., Cell shape regulates collagen type I expression in human tendon fibroblasts. Cell Motil Cytoskeleton, 2008. 65(4): p. 332-41.
18. Nathan, A.S., et al., Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater, 2011. 7(1): p. 57-66.
19. Sodergard, A. and M. Stolt, Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science, 2002. 27(6): p. 1123-1163.
20. Rezakhaniha, R., et al., Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol, 2012. 11(3-4): p. 461-73.
21. Kuo, Y.W. and J.L. Wang, Rheology of intervertebral disc: an ex vivo study on
the effect of loading history, loading magnitude, fatigue loading, and disc
degeneration. Spine (Phila Pa 1976), 2010. 35(16): p. E743-52.
22. Ribeiro, C., Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 2011. 12(1).
23. Hernandez Sanchez, F., et al., Influence of low-temperature nucleation on the crystallization process of poly(L-lactide). Biomacromolecules, 2005. 6(6): p. 3283-90.
24. Altman, G.H., et al., Cell differentiation by mechanical stress. FASEB J, 2002. 16(2): p. 270-2.
25. Caves, J.M., et al., Microcrimped collagen fiber-elastin composites. Adv Mater, 2010. 22(18): p. 2041-4.
26. Zheng, G.F., et al., Precision deposition of a nanofibre by near-field
electrospinning. Journal of Physics D-Applied Physics, 2010. 43(41): p. -.
27. Chang, C., K. Limkrailassiri, and L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Applied Physics Letters, 2008. 93(12): p. 123111. 38

28. Rwei, S.P., Y.T. Lin, and Y.Y. Su, Study of self-crimp polyester fibers. Polymer Engineering & Science, 2005. 45(6): p. 838-845.
29. Lin, T., H. Wang, and X. Wang, Self-Crimping Bicomponent Nanofibers Electrospun from Polyacrylonitrile and Elastomeric Polyurethane. Advanced Materials, 2005. 17(22): p. 2699-2703.
30. Denver C. Surrao, J.W.S.H., Stephen D. Waldman, Brian G. Amsden, Self-Crimping, Biodegradable, Electrospun Polymer Microfibers.
Biomacromolecules 2010. 11: p. 3624–3629
31. Wasanasuk, K. and K. Tashiro, Structural Regularization in the Crystallization Process from the Glass or Melt of Poly(L-lactic Acid) Viewed from the Temperature-Dependent and Time-Resolved Measurements of FTIR and Wide-Angle/Small-Angle X-ray Scatterings.Macromolecules, 2011. 44(24): p. 9650-9660.
32. Prodanov, L., et al., The interaction between nanoscale surface features and mechanical loading and its effect on osteoblast-like cells behavior. Biomaterials, 2010. 31(30): p. 7758-65.
33. Chen, C.S., et al., Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun, 2003. 307(2): p. 355-61.
34. Surrao, D.C., et al., A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomater, 2012.
35. Screen, H.R.C., et al., Local strain measurement within tendon. Strain, 2004. 40(4): p. 157-163.
36. Asparuhova, M.B., L. Gelman, and M. Chiquet, Role of the actin cytoskeleton in tuning cellular responses to external mechanical stress. Scand J Med Sci Sports, 2009. 19(4): p. 490-9.
37. Arnaout, M.A., S.L. Goodman, and J.P. Xiong, Structure and mechanics of
integrin-based cell adhesion. Curr Opin Cell Biol, 2007. 19(5): p. 495-507.
38. Totsukawa, G., et al., Distinct roles of ROCK (Rho-kinase) and MLCK in spatial
regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol, 2000. 150(4): p. 797-806.
39. Katoh, K., Y. Kano, and S. Ookawara, Rho-kinase dependent organization of stress fibers and focal adhesions in cultured fibroblasts. Genes Cells, 2007. 12(5): p. 623-38.
40. Mackie, E.J., W. Halfter, and D. Liverani, Induction of tenascin in healing wounds. J Cell Biol, 1988. 107(6 Pt 2): p. 2757-67.
41. Sarasa-Renedo, A. and M. Chiquet, Mechanical signals regulating 39 extracellular matrix gene expression in fibroblasts. Scand J Med Sci Sports, 2005. 15(4): p. 223-30.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63730-
dc.description.abstract在韌帶中膠原蛋白纖維呈現波浪狀的平行結構,而此種波浪狀結構帶給韌帶
良好的活動性但卻又能保護關節避免脫臼。先前研究指出當韌帶細胞在有平行的
電紡材料上會有較好的細胞外間質分泌。所以為了模擬真正韌帶中的環境,我們
的實驗主要是探討平行與波浪狀電紡絲結構的機械性質上有什麼不同,以及細胞
在此種支架上會有什麼樣的反應及表現,最後加入機械刺激後會帶給細胞什麼樣
的影響。我們利用高分子聚合物玻璃轉移溫度(T g )的這項特性,加熱聚乳酸超過
其 T g 值,使平行纖維變形而形成波浪形態的電紡絲,如此產生的纖維結構與韌
帶的機械性質較為接近。此外細胞細胞型態在波浪狀電紡絲上也與平行電紡絲有
相當大的不同,細胞及細胞骨架皆沿著纖維的走向做波浪狀的延展,但在平行電
紡絲中細胞核型態皆呈現較細長且有明顯的張力絲(stress fiber)的生成。細
胞在波浪狀電紡絲中 tenascin-C 與膠原帶白表現量明顯高於平行電紡絲。經由
拉伸刺激之後,在波浪狀電紡絲上的細胞型態有著明顯的改變,且膠原蛋白的表
現量也有明顯上升的趨勢。這說明了波浪狀電紡絲結構會影響細胞型態,且經由
拉伸刺激波浪狀的纖維會帶給細胞不同的刺激進而促進細胞有良好的表現。
zh_TW
dc.description.abstractNative ligament tissue is composed with aligned-wavy collagen fiber, and the wavy structure is believed to provide ligament with mechanical properties to support joint movement while preventing dislocation. Previous studies demonstrate that cells seeded on aligned electrospun fiber had higher extracellular matrix synthesis. Thus, The aim of this study is to investigate the effects of biomimetic wavy electrospun fiber scaffolds on material properties and cell physiology. We also examined the effects of mechanical stimulation on phenotypic expression.. We successfully fabricated aligned wavy fiber scaffold by heating straight electrospun PLLA polymers over its glass transition temperature (Tg). Our results show that the wavy fiber exhibit nonlinear mechanical properties more similar to those of ligament compared with straight fibers. Furthermore, cell morphology on wavy fiber is significantly different from the straight fibers. The cytoskeleton elongates with the wavy fiber, suppressing stress fiber formation, Comparing with the straight fiber group, nucleus shape on wavy fibers has smaller aspect ratio. Fiber morphology also affects cells phenotype. The wavy fiber substrate significantly increases collagen type I, type III and tenascin-C gene expression. After dynamic loading, gene expression of collagen type I and type III increased significantly. In summary, the wavy fiber provides a biomimetic substrate for ligament fibroblasts that will result in enhanced phenotypic gene expressionen
dc.description.provenanceMade available in DSpace on 2021-06-16T17:17:30Z (GMT). No. of bitstreams: 1
ntu-101-R99548046-1.pdf: 2165095 bytes, checksum: d2f84fbd6b449f4c05cbe965c2d2e57a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審書...2
誌謝...3
中文摘要... i
Abstract ...ii
Contents ... iv
List of Figures ... vi
List of Tables ... vii
Chapter 1 Introduction ... 1
1.1 Purpose of Research ... 1
1.2 Ligament Tissue Engineering ... 2
1.3 Cell Shape and Orientation Effects Cell Phenotype ... 2
1.4 Nonlinear Elasticity of Ligament Mechanic ... 3
1.5 The effects of Mechanical Stimulation on Ligament Fibroblasts ... 4
1.6 Electrospinning ... 5
Chapter 2 Material and Method ... 7
2.1 Scaffold Preparation ... 7
2.2 Characterization of Electrospun Fiber ... 8
2.3 Mechanical Testing ... 8
2.4 Polymer Characterization... 9
2.5 Cell Culture ... 9
2.6 Tensile Loading ... 10
2.7 Cell Morphology ... 10
2.8 RNA Extraction ... 11
2.9 Quantification of mRNA Levels ... 11
2.10 Statistical Analysis ... 12
Chapter 3 Results ... 13
3.1 Fiber Waviness ... 13
3.2 Thermal Properties ... 13
3.3 Mechanical Properties ... 14
3.4 Cell Morphology ... 15
3.5 Substrate Effects Cell Gene Expression... 15
3.6 The Effects of Mechanical Stimulation ... 16
Chapter 4 Discussion ... 17
Reference ... 36
Appendix...40
dc.language.isoen
dc.subject細胞zh_TW
dc.subject電紡絲zh_TW
dc.subject機械刺激zh_TW
dc.subject基因表現zh_TW
dc.subjectmechanical stimulationen
dc.subjectelectrospinningen
dc.subjectcellen
dc.subjectgene expressionen
dc.title波浪狀電紡絲結構的機械性質與其對韌帶細胞的影響zh_TW
dc.titleMechanical Properties of Microcrimped Fibers and Their Effects on Ligament Fibroblastsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡偉博(Wei-Bor Tsai),王兆麟(Jaw-Lin Wang),郭柏齡(Po-Ling Kuo)
dc.subject.keyword電紡絲,細胞,機械刺激,基因表現,zh_TW
dc.subject.keywordelectrospinning,cell,mechanical stimulation,gene expression,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2012-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
Appears in Collections:醫學工程學研究所

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
2.11 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved