請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63719完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳明汝(Ming-Ju Chen) | |
| dc.contributor.author | Pei-Chuan Kuo | en |
| dc.contributor.author | 郭佩娟 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:17:11Z | - |
| dc.date.available | 2017-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-17 | |
| dc.identifier.citation | 王聖耀。2011。探討克弗爾粒與viili菌元之菌群分布並研究分離菌株之生物膜形成機制。臺灣大學動物科學技術學系。
林慶文。1986。乳品製造學。華香園出版社。 林雅婷。2011。開發潛力益生乳酸菌作為飼料添加物。臺灣大學動物科學技術學系。 郭怡孜。2006。應用最適化方法開發具隔熱性益生菌微膠囊。臺灣大學動物科學技術學系。 張勝善。1987。牛乳與乳製品。長河出版社。 陳振元。2007。應用序列二次規劃法開發富含左旋肉{21633c}機能性發酵乳。臺灣大學動物科學技術學系。 陳彥伯。Metagenomics: 揭開腸道微生物面紗。臺灣乳酸菌協會學術研討會暨第四屆第二次會員大會。 黃懿儂。2010。臺灣黏質發酵乳之機能性研究。臺灣大學動物科學技術學系。 謝月玲。2010。藉由臺灣黏質發酵乳及分離菌株Lactococcus lactis subsp. cremoris T1製作機能性低脂乾酪之研究。臺灣大學動物科學技術學系。 謝馨慧。2011。糖液克弗爾粒於不同發酵基質中之菌相分布與分離菌株抗腸炎機能性之研究。臺灣大學動物科學技術學系。 中華民國國家標準 CNS。乳品檢驗法。經濟部中央標準局。 中華民國國家標準 CNS。乾酪檢驗法。經濟部中央標準局。 Anderson, D. L., V. V. Mistry, R. L. Brandsma and K. A. Baldwin. 1993. Reduced fat cheddar cheese from condensed milk. manufacture, composition, and ripening. J. Dairy Sci.76:2832-2844. Ana, M. P. G. and F. X. Malcatai. 1998. Development of probiotic cheese manufactured from goat milk: response surface analysis via technological manipulation. J. Dairy Sci. 81:1492-1507. AOAC. 2000. AOAC Official Method 920.124: Acidity of cheese, titrimetric method. Association of official analytical chemists, Washington, D. C. Ahmed, N. H., M. E. Soda, A. N. Hassan and J. Frank. 2005. Improving the textural properties of an acid-coagulated (Karish) cheese using exopolysaccharide producing cultures. LWT- Food Sci. Technol. 38: 843-847. Awad, S., A. N. Hassan and F. Halaweish. 2005. Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese: composition and proteolysis. J. Dairy Sci. 88: 4195-4203. Awad, S., A. N. Hassan and K. Muthukumarappan. 2005. Application of exopolysaccharide-producing cultures in reduced-fat cheddar cheese: texture and melting properties. J. Dairy Sci. 88: 4204-4213. Ayala-Herna’ndez, I., A. N. Hassan, H. D. Goff and M. Corredig. 2008. Interactions between milk proteins and exopolysaccharides produced by Lactococcus lactis observed by scanning electron microscopy. J. Dairy Sci. 91:2583-2590. Ayala-Herna’ndez, I., A. N. Hassan, H. D. Goff and M. Corredig. 2008. Production, isolation and characterization of exopolysaccharides produced by Lactococcus lactis subsp. cremoris JFR1 and their interaction with milk proteins: Effect of pH and media composition. Int. Dairy J. 18: 1109-1118. Ayala-Herna’ndez, I., A. N. Hassan, H. D. Goff and M. Corredig. 2009. Effect of protein supplementation on the rheological characteristics of milk permeates fermented with exopolysaccharide-producing Lactococcus lactis subsp. cremoris. Food Hydrocolloids. 1299-1304. Alegria, A., S. Delgado, C. Roces, B. Lopez and B. Mayo. 2010. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. Int. J. Food Microbiol. 61-66. Agarwal, S. D. M., W. Graves, P. D. Gerard and S. Clark. 2011. Sodium content in retail Cheddar, Mozzarella, and process cheeses varies considerably in the United States. J.Dairy Sci. 94:1605-15. Ayyash, M. M. and N. P. Shah. 2010. Effect of partial substitution of NaCl with KCl on proteolysis of Halloumi cheese. J. Food Sci. 1111:1750-3841. Bank B. B., D. Kanganis, L. F. Liebes and R. Silber.1989.Chlorambucil pharmacokinetics and DNA binding in chronic lymphocytic leukemia lymphocytes. Cancer Res. 49: 554lympho. Banks, J. M., E. A. Hunter and D. D. Muir. 1993. Sensory properties of low fat cheddar cheese: effect of salt content and adjunct culture. J. Soc. Dairy Technol. 46: 119-123. Bryanta, Z. U. and J. Steffe. 1995. Texture of Cheddar Cheese as Influenced by Fat Reduction. J. Food Sci. 60:1216-1219. Beal, P. and G. S. Mittal. 2000. Vibration and compression responses of Cheddar cheese at different fat content and age. Milchwissenschaft. 55: 139. Broadbent, J. R., D. J. McMahon, J. O. Craig and D. L. Welker. 2001. Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. Int. Dairy J. 11: 433-439. Banks, J. M., E. A. Hunter and D. D. Muir. 1993. Sensory properties of low fat Cheddar cheese: effect of salt content and adjunct culture. J. Soc. Dairy Technol. 46: 119-123. Banks, J. K. 2004. The technology of low-fat cheese manufacture. Society of Dairy Tech. Vol 57:No 4. Butit, F. C. A., J. S. Rocha, E. G. Assis and S. M. I. SAAD. 2005a. Probiotic potential of Minas fresh cheese prepared with the addition of Lactobacillus paracasei. LWT-Food Science and Tech.38: 173-180. Butit, F. C. A., J. S. Rocha and S. M. I. Saad. 2005b. Incorpor at ion of Lactobacillus acidophilus in Minas fresh cheese and its implications for textural and sensorial properties during storage. J. Dairy Sci. 15: 1279-1288. Cerening, J., C. Bouillanne, M. Landon and M. Desmazeaud. 1992. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J. Dairy Sci. 75:692-699. Chen, C. M. and M. E. Johnson. 1996. Process for manufacturing reduced-fat Cheddar cheese.United States Patent. 5554398. Claude P. C., G. Helene, C. John, C. Nathalie and F. Evelyne.1999. Evaluation of yeast extracts as growth media supplements for lactococci and lactobacilli by using automated spectrophotometry. J. Gen. Appl. Microbiol.45:17-21. Chung, Y. W., J. H. Choi, T.Y. Oh, C. S. Eun and D. S. Han. 2007. Lactobacillus casei prevents the development of dextran sulphate sodium-induced colitis in Toll-like receptor 4 mutant mice. Clin. Exp. Immunol. 151:182-189. Covacevich, H. R. and F. V. Kosikowski. Cottage cheese by ultrafiltration. J. Dairy Sci.61:529-535. Cortez, M. A. S., M. M. Furtado, M. L. Gigante and P. S. Kindstedt. 2008. Effect of pH on characteristics of low-moisture mozzarella cheese during refrigerated storage. J. Food Sci. 73:443-448. Clark, S., M. Costello, M. A. Drake and F. Bodyfelt. 2009. The sensory evaluation of dairy products. AVI Van Nostrand Reinhold Comp. Inc. New York. Costa, N. E., J. A. Hannon , T. P. Guinee, M. A. E. Auty , P. L. H. McSweeney and T. P. Beresford. 2010. Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat Cheddar cheese. J. Dairy Sci. 93 :3469-3486. Chiang, S. and T. M. Pan. 2012. Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Appl. Microbiol. Biotechnol. 93:903-916. Costa, N. E., J. A. Hannon , T. P. Guinee, M. A. E. Auty , P. L. H. McSweeney and T. P. Beresford. 2012. Influence of an exopolysaccharide produced by a starter on milk coagulation and curd syneresis. Int. Dairy J. 22: 48-57. Drake, M. A. and B. G. Swanson. 1995. Reduced- and low-fat cheese technology: A review. Trends Food Sci. Technol. 6: 366-369. Duboc, P. and B. Mollet. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759-768. Dabour, N., E. E. Kheadr, I. Fliss and G. LaPointe. 2005. Impact of ropy and capsular exopolysaccharide-producing strains of Lactococcus lactis subsp. cremoris on reduced-fat Cheddar cheese production and whey composition. Int. Dairy J. 15: 459-471. Dabour, N., E. Kheadr, N. Benhamou, I. Fliss and G. LaPointe. 2006. Improvement of texture and structure of reduced-fat Cheddar cheese by exopolysaccharide-producing Lactococci. J. Dairy Sci. 89: 95-110. Dabour, N., E. Kheadr, N. Benhamou, I. Fliss and G. LaPointe. 2006. Improvement of texture and structure of reduced-fat cheddar cheese by exopolysaccharide-producing Lactococci. J. Dairy Sci. 89:95-110. De Candia, S., M. De Angelis, E. Dunlea, F. Minervini, P. L. H. Mc- Sweeney, M. Faccia and M. Gobetti. 2007. Molecular identification and typing of natural whey starter cultures and microbiological and compositional properties of related traditional Mozzarella cheeses. Int. J. Food Microbiol. 119:182-191. Drake M. A., R. E. Miracle and D. J. McMahon. 2010. Impact of fat reduction on flavor and flavor chemistry of Cheddar cheeses. J. Dairy Sci. 93 :5069-5081. Fox, P.F. 1989. Proteolysis during cheese manufacture and ripening. J. Dairy Sci. 72:1379F. 198. Fenelon, M. A., P. O’Connor and T. P. Guinee . 1999. The effect of fat content on the microbiology and proteolysis in Cheddar cheese during ripening. J. Dairy Sci. 83: 2173-2183. Fox, P. F., P. McSweeney, T. M. Cogan and T. P. Guinee. 2000. Fundamentals of cheese science. Aspen Publishers Inc., USA. Feeney, E. P., T. P.Guinee and P. F. Fox. 2002. Effect of pH and calcium concentration on proteolysis in Mozzarella cheese. J. Dairy Sci. 85:1646. Folkenberg, D. M., P. Dejmek, A. Skriver, H. S. Guldager and R. Ipsen. 2006. Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. Int. Dairy J. 16: 111-118. Foegeding, E. A. and M. A. Drake. 2007. Invited review: Sensory and mechanical properties of cheese texture. Jounal of Dairy Sci. 90:1611-1624. Finazzi, G., P. Daminelli, A. Serraino, V. Pizzamiglio, R. Riu, F. Giacometti, B. Bertasi, M.N. Losio and P. Boni. 2011. Behaviour of Listeria monocytogenes in packaged water buffalo mozzarella cheese. Lett. Appl. Microbiol. 53: 364-370. Gibson, G. R. and M. B. Roberfroid.1995. Dietary modulation of the human cofructo-oligosaccharides microbiota-introducing the concept of prebiotics. J. Nutr. 125: 1401. Grobben, G. J., I. Chin-Joe, V. A. Kitzen, I. C. Boels, F. Boer,J. Sikkema, M. R. Smith and J. A. M. de Bont. 1998. Enhancement of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a simplifiedd efined medium. Appl. Environ. Microbiol. 64:1333-1337. Guinee, T. P., E. P. Feeney, M. A. E. Auty and P. F. Fox. 2002. Effect of pH and calcium concentration of some textural and functional properties of Mozzarella cheese. J. Dairy Sci. 85:1655-1669. Guichard, E. 2002. Interactions between flavor compounds and food ingredients and their influence on flavor perception. Food Reviews Int. 18: 49-70. Gwartney, E. A., E. A. Foegeding and D. K. Larick. 2002. The texture of commercial full-fat and reduced-fat cheese. Sensory and Nutritive Qualities of Food. 67: 812-816. Guzel-Seydim, Z. B., E. Sezgin and A. C. Seydim. 2005. Influences of exopolysaccharide producing cultures on the quality of plain set type yogurt. Food control 16: 205-209. Guinee, T. and P. L. H. McSweeney. 2006. Significance of milk fat in cheese. Pages 377-440 in Advanced Dairy Chemistry. H McSweeney. New York. Gupta A., B. Mann, R. Kumar and R. B. Sangwan. 2009. Antioxidant activity of Cheddar cheeses at different stages of ripening. J. Dairy Sci. 10: 339-347. Gernigon, G., P. Schuck and R. Jeantet. 2010. Processing of mozzarella cheese wheys and stretchwaters: a preliminary review mozzarella. Dairy Sci. Technol. 90: 27-46. Hutkins, R. W. and H. A. Morris. 1987. Carbohydrate metabolism by Streptococcus thermophilus: A review. J. Food Prot. 50:876-884. Hughes, D. B. and D. G. Hoover. 1994. Viability and enzymatic activity of Bifidobacteria in milk. J. Dairy Sci. 78: 268-276. Hassan, A. N. and J. F. Frank. 1997. Modification of microstructure and texture of rennet curd by using a capsule-forming non-ropy lactic culture. J. Dairy Res. 64: 115-121. Hui, Y. H., L. Meunier-Goddik , H. Solvejg, J. Josephsen , W. Nip , P. S. Stanfield and F. Toldra. 2004. Handbook of food and beverage fermentation technology. CRCnetBase. Hassan, A. N. and S. Awad. 2005. Application of exopolysaccharide-producing cultures in reduced fat Cheddar cheese: cryo-scanning electron microscopy observations. J. Dairy Sci. 88:4214-4220. Hassan A. N., S. Awad and V. V. Mistry. 2007. Reduced fat process cheese made from young reduced fat Cheddar cheese manufactured with exopolysaccharide-producing cultures. J. Dairy Sci. 90:3604-3612. Han, G. D., X. Lu, Y. Gu and W. Yu. 2011. Antibiofilm activity of an exopolysaccharide from marine bacterium vibrio sp. QY101.Micro. cell factories. 10:74. Johnson, M. E. and N. F. Olson. 1985. Nonenzymatic browning of mozzarella cheese. J. Dairy Sci. 68:3143-3147. Jameson, G. W. 1987. Dietary cheeses: low fat, low salt. Food Technol. 39: 99-101. Joshi, N. S., K. Muthukumarappan and R. I. Dave. 2002. Role of soluble and colloidal calcium contents on functionality of salted and unsalted part skim Mozzarella cheese. Aust. J. Dairy Technol. 57:203-210. Joshi, N. S., K. Muthukumarappan and R. I. Dave. 2004. Effects of reduced calcium, test temperature and storage on stretchability of part skim Mozzarella cheese. Aust. J. Dairy Technol. 59:60-64. Johnson, M. E. and J. A. Lucey. 2006. Calcium: A key factor in controlling cheese functionality. Australian J. Dairy Tech. 61:147-153. Jimeinez-Guzmaen, J., F. N. AngeAlica, E. C.Alma and G. G. Mariano. 2009. Use of an exopolysaccharide-producing strain of Streptococcus thermophilus in the manufacture of Mexican Panela cheese. Food Sci. 42: 1508-1512. Kindstedt, P. S., L. J. Kiely and J. A. Gilmore. 1992. Variation in Composition and Functional Properties Within Brine-Salted Mozzarella Cheese. J. Dairy Sci.75:2913-2921. Kimura, T., Y. Sagara, M. Fukushima and S. Taneya. 1992. Effect of pH on sub-microscopic structure of String cheese. Milchwissenschaft.47:547-552. Kosikowski, F. and V. V. Mistry. 1997. Cheese and fermented milk foods. 3rd ed. Westport, Conn. F. V. Kosikowski. Kilcawley, K. N., M. G. Wilkinson and P. F. Fox. 2001. A survey of lipolytic and glycolytic end-products in commercial Cheddar enzyme-modified cheese. J Dairy Sci. 84:66-73. Koca, N. and M. Metin. 2004. Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. Int. Dairy J. 14: 365-373. Kotzamanidis, C., A. Kourelis, E. Litopoulou-Tzanetaki, N. Tzanetakis and M. Yiangou. 2010. Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int. J. Food Microbiol. 140: 154-163. Lawrence, R. C., L. K. Creamer and J. Gilles. 1987. Texture development during cheese ripening. J. Dairy Sci. 70:1748-1760. Laws, A., Y. Gu and V. Marshall. 2001.Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv. 19:597-625. Lucey, J. A., M. E. Johnson and D. S. Horne. 2003. Invited review: Perspectives on the basis of the rheology and texture properties of cheese. J Dairy Sci. 86:2725-2743. Lykkesfeldt, J. and O. Svendsen. 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. J. 173:502-511. Li, D. M. Yang, J. Hu, J. Zhang, R. Liu, X. Gu, Y. Zhang and Z. Wang. 2009. Antibiotic-resistance profile in environmental bacteria isolated from penicillin production wastewater treatment plant and the receiving river. Appl. Environ. Microbiol. 11: 1506-1517. E Metchnikoff, E. 1908. Prolongation of life. New York: Putnam. Man de, J. C., M. Rogosa and M. E. Sharpe. 1960. A medium for the cultivation of lactobacilli. J. Bacteriol. 23:130-135. McGregor, J. U. and C. H. White. 1990. Effect of enzyme treatment and ultrafiltration on the quality of lowfat cheddar cheese. J. Dairy Sci. 73: 571-578. Muir, D. D. L. and E. A. Hunter. 1992. Sensory evaluation of Cheddar cheese: the relation of sensory properties to perception of maturity. J. Sot. Dairy Technol. 45:23-30. Matzdorf, B., S. L. Cuppett, L. Keeler and R. W. Hutkins. 1994. Browning of Mozzarella cheese during high temperature pizza baking. J. Dairy Sci. 77:2850 -2853._1878 Mistry, V. V. and K. M. Kasperson. 1998. Influence of salt on the quality of reduced fat Cheddar cheese. J. Dairy Sci. 81: 1214-1221. Mireille Y. and R. Liesbeth. 2001. Cheese flavour formation by amino acid catabolism. J. Dairy Sci. 11: 185-201. Metzger, L. E., D. M. Barbano, P. S. Kindstedt and M. R. Guo. 2001a. Effect of milk preacidification on low fat Mozzarella cheese: II. Chemical and functional properties during storage. J. Dairy Sci. 84:1348-1356. Metzger, L. E., D. M. Barbano and P. S. Kindstedt. 2001b. Effect of milk preacidification on low fat Mozzarella cheese: III. Post-melt chewiness and whiteness. J. Dairy Sci. 84:1357-1366. Mistry, V. V. 2001. Low fat cheese technology. Int. Dairy J. 11: 413-422. Macedo, M. G., C. Lacroix, N. J. Gardner and C. P. Champagne. 2002. Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. Int. Dairy J.12:419-426. Miguel, A. C., M. A. Vargas, V. Regueiro, C. M. Llompart, S. Alberti and J. Bengoechea. 2004. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun.72.12.7107-7144. McSweeney, P. L. H. 2007. Cheese problems solved. University College Cork, Ireland. Nakajima, H. and T. Hirota. 1995. Structure of the extracellular polysaccharide from slimeforming Lactococcus lactis subsp. cremoris SBT 0495. Carbohydr Res. 224:245-253. Olson, N. F. and M. E. Johnson. 1990b. Low-fat cheese products: characteristics and economics. Food Tech. 44:93-96. Osaili, T. M., M. M. Ayyash, A. A. Al-Nabulsi, R. R. Shaker and N. P. Shah. 2010. Effect of curd washing level on proteolysis and functionality of low-moisture mozzarella cheese made with galactose-fermenting culture. J. Dairy Sci. 75: 406-412. Paul, S. K. B. S. and P. F. Fox. 1993. Effect of manufacturing factors, composition, and proteolysis on the functional characteristics of mozzarella cheese. Crit. Rev. Food. Sci. Nutr. 33:167-187. Perry, D. P., D. J. Mcmahon and C. J. Oberg. 1997. Effect of exopolysaccharide-producing cultures on moisture retention in low fat mozzarella cheese. J. Dairy Sci. Vol. 80, No. 5. Perry D. P., D. J. Mcmahon and C. J. Oberg. 1998. Manufacture of low fat mozzarella cheese using exopolysaccharide-producing starter cultures. Int. Dairy J. 84322-8700. Pleijsier, M. T., P. W. De Bont , R. Vreeker and A. M. Ledeboer. 2000. Functional properties of exocellular polysaccharides in dairy based foods. In 2nd International symposium on food rheology and structure. Zn dairy based foods. Pastorino, A. J., C. L. Hansen and D. J. McMahon. 2003. Effect of pH on the chemicalcomposition and structure-function relationships of Cheddar cheese. J. Dairy Sci. 86:2751-2760. Pan, D. and X. Mei. 2010. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydrate Polymers. 80: 908-914. Rudan, M. A. and D. M. Barbano. 1998. A model of mozzarella cheese melting and browning during pizza baking. J. Dairy Sci. 81:2312-2319. Romeih, E. A., M. Alexandra, G. B. Costas and K. Z. Gregory. 2002. Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: chemical, physical and sensory attributes. Int. Dairy J. 12: 525-540. Ruas-Madiedo, P., R. Tuinier, M. Kanning, and P. Zoon. 2002. Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int. Dairy J. 12: 689-695. Stampanoni, C. R. and A. C. Noble. 1991. The influence of fat, acid, and salt on the perception of selected taste and texture attributes of cheese analogs -A scalar study. J. Texture Stud. 22: 367-380. Sheehan, J. J. and T. P. Guinee. 2004. Effect of pH and calcium level on the biochemical, textural and functional properties of reduced fat Mozzarella cheese. Int. Dairy J. 14:161-172. Saint-Eve, A., E. Paci Kora and N. Martin. 2004. Impact of the olfactory quality and chemical complexity of the flavouring agent on the texture of low fat stirred yogurts assessed by three different sensory methodologies. Food Qual. Prefer.15: 655-668. Savoie, S., C. P. Champagne, S. Chiasson and P. Audet. 2007. Media and process parameters affecting the growth, strain ratios and specific acidifying activities of a mixed lactic starter containing aroma-producing and probiotic strains. J. Appl. Microbiol. 163-174. Sienkiewicz-Sz1apka, E., B. Jarmołowska , S. Krawczuk , E .Kostyra , H. Kostyra and M. Iwan. 2009. Contents of agonistic and antagonistic opioid peptides in different cheese varieties. Int. Dairy J. 19:258-263. Sienkiewicz-Sz1apk, E., B. Jarmo1owska, S. Krawczuk, E. Kostyra, H. Kostyra and K. Bielikowicz. 2009. Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int. Dairy J. 19: 252-257. Saint-Eve, A., C. Lauverjat, C. Magnan, I. Deleris and I. Souchon. 2009. Reducing salt and fat content: impact of composition, texture and cognitive interactions on the perception of flavoured model cheeses. Food Chem. 116: 167-175. Santos, P., S. Ferreira, N. J. d. Andrade, L. H. M. Silva, G. P. Camilloto and P. C. Bernardes. 2009. Increased presevation of sliced Mozzarella cheese by antimibrobial sachet incorporated with allyl isothiocyanate. Packaging Tech. and Sci. 21: 375-383. Saija, N., D. W. Alan and J. B. Rod. 2010. Development of a dairy-based exopolysaccharide bioingredient. Int. Dairy J. 20:603-608. Severance, E. G., B. D. Faith, H. Meredith, K. Bogdana, H. Luladey, Y. Shuojia, R. S. Cassie, E. O. Andrea, B. Ioannis, X. Jianchun, D. Didier, H. Willem and H. Y. Robert. 2010. Subunit and whole molecule specificity of the anti-bovine casein immune response in recent onset psychosis and schizophrenia. Schizophr Res. 118: 240-247. Sprong, R. C., A. J. Schonewille and R. van der Meer. 2010. Dietary cheese whey protein protects rats against mild dextran sulfate sodium-induced colitis: role of mucin and microbiota. J. Dairy Sci. 93:1364-1371. Smith-Spangler, C. M., J. L. Juusola, E. A. Enns, D. K. Owens and A. M. Garber. 2010. Population strategies to decrease sodium intake and the burden of cardiovascular disease. Ann. Intern. Med. 152:481-487. Van Niel a, E. W. J. and B. Hahn-HaE gerdal. 1999. Nutrient requirements of lactococci in defined growth media. Appl. Microbiol. 52: 617-627. Wendin, K., M. Langton, L. Caous and G. Hall. 2000. Dynamic analyses of sensory and microstructural properties of cream cheese. Food Chem. 71: 363-378. Yun, J. J., D. M. Barbano and P. S. Kindstedt. 1993. Mozzarella cheese: Impact of milling pH on chemical composition and proteolysis. J. Dairy Sci.76:3629-3638. Zalazar, C. A., C. S. Zalazar, S. Bernal, N. Bertola, A. Bevilacqua and N. Zaritzky. 2002. Effect of moisture level and fat replacer on physicochemical, rheological and sensory properties of low fat soft cheeses. Int. Dairy J. 12: 45-50. Zisu, B. and N. P. Shah. 2005. Low-fat Mozzarella as influenced by microbial exopolysaccharides, preacidification, and whey protein concentrate. J. Dairy Sci. 88:1973-1985. Zisu, B. and N. P. Shah. 2005. Textural and functional changes in low-fat Mozzarella cheeses in relation to proteolysis and microstructure as influenced by the use of fat replacers, pre-acidification and EPS starter. Int. Dairy J. 15: 957-972. Zisu, B. and N. P. Shah. 2007. Texture characteristics and pizza bake properties of low-fat Mozzarella cheese as influenced by pre-acidification with citric acid and use of encapsulated and ropy exopolysaccharide producing cultures. Int. Dairy J. 17: 985-997. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63719 | - |
| dc.description.abstract | 乾酪是良好的蛋白質及鈣質之主要來源,但也包含豐富飽和脂肪。低脂乾酪由於含水量高導致有較差之質地、風味及機能特性,但添加脂肪取代物可改善此情況。研究指出胞外多醣體具有良好保水能力,可增加乳製品之保水性並干擾蛋白質分子聚合。此重要特性可當作脂肪取代物,自臺灣黏質發酵乳(Taiwanese ropy fermented milk)中分離出之Lactococcus lactis subsp. cremoris T1菌株(T1),先前實驗室研究指出具有產生胞外多醣體之特性,因此在乾酪製作過程中添加作脂肪取代物。因此,本研究探討添加T1菌株於低脂乾酪對質地及機能性之影響。
首先,選用特級甜性脫脂乳清粉、糖蜜酵母粉、檸檬酸鈉及磷酸氫二鉀當作原料,以反應曲面法及二次規劃法求得高產量T1菌株之最適化配方。實驗組數共得到30組而實驗結果菌數落於7.00到9.00 log CFU/mL,得到最佳結果菌數為9.00 log CFU/mL,在驗證實驗結果證實預期結果與實驗結果並無顯著性差異。在發展T1菌株之菌數最大化培養基後,於工廠產製低脂 Mozzarella乾酪。結果指出添加T1可增進乾酪保水性及改善乾酪質地;且在品評實驗結果顯示出低脂乾酪之外觀、風味、香氣與全脂乾酪並無顯著性差異。 此外更進一步探討T1菌株添加於低脂乾酪對於免疫和抗腸炎試驗之影響。對於免疫調節反應,添加T1菌株之低脂乾酪可抑制RAW 264.7少數發炎激素分泌;在抗腸炎結果顯示,添加T1菌株低脂乾酪可顯著提升Caco-2細胞單層膜之上皮細胞完整性。 總結來說,添加T1菌株之低脂乾酪在化學基本組成分、物性分析與控制組全脂乾酪相比較並無顯著性差異,而對於免疫及抗腸炎之結果也皆有影響。透過以上試驗,可作為日後產製健康乾酪之參考依據。 | zh_TW |
| dc.description.abstract | Cheese is a good source of protein and calcium, but it is a major source of saturated fat. Demand for cheese with less fat is growing. The reduced-fat cheeses are usually characterized as having poor body, flavor and functional properties because of high moisture. Addition of the fat replacers may provide the solution. Exopolysaccharide (EPS) could increase water-holding capacity and interfere with protein-protein interactions in food products, which are important properties required in fat replacement. Lactococcus lactis subsp. cremoris T1 (T1), isolated from Taiwanese ropy fermented milk, may act as a fat replacer in reduced-fat cheese manufacture according to its EPS-producing property. Thus, the purpose of this study was to investigate of effect of inoculating Lactococcus lactis subsp. cremoris T1 on physical and functional characteristics of reduced-fat cheese.
First, the growth medium, which was proportion of whey powder, yeast extract, citrate and potassium phosphate, was optimized using response surface methodology (RSM) to first construct a surface model, with sequential quadratic programming (SQP) subsequently adopted to optimize the model and evaluate the cell counts of T1. Optimization results indicated that after 30 sets of randomly generated initial points leading to optimal cell counts (local optimal) ranging from 7.00 to 9.00 log CFU/mL, the global optimal cell count of T1 was found to be 9.00log CFU/mL (99.99% certainty). The verification experiment yielded a result close to the predicted values, with no significant difference (P > 0.05). After maximizing the T1 growth medium, we produced reduced-fat Mozzarella cheese in an industrial cheese factory. The full fat cheese and reduced-fat cheese were positive and negative controls, respectively. Results indicated that addition of T1 could enhance moisture content and improve cheese texture. The customer preferential score of the reduced-fat cheese sample showed no difference in appearance, flavour and aroma with the full-fat counterpart. Additionally, the functional characteristics including the immunoregulatory and anti-colitis effects of T1 reduced-fat cheese were also evaluated in this study. For immunoregulatory effect, the T1 samples could stimulate the production of TNF-α, IL-10, IL-1β and IL-6 in murine macrophage cell line RAW 264.7. For anti-colitis effect, the T1 samples could also strengthen the epithelial barrier function in vitro by increasing the transepithelial electrical resistance(TEER)but not significantly upregulated the level of the chemokine CCL-20 at both the apical and basolateral sites of Caco-2 cell monolayer. In conclusion, this study demonstrated that the reduced-fat cheese made with T1 shows no significant difference in chemical properties, textural characteristics when compared with the full fat cheese control. The T1 cheese also demonstrated the immunoregulatory and anti-colitis effects. These findings will help develop new healthy cheese products. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:17:11Z (GMT). No. of bitstreams: 1 ntu-101-R99626023-1.pdf: 2379856 bytes, checksum: e0edaae323bc61f1c204c6377d28d745 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書
誌謝 Ⅷ 序言 Ⅹ 中文摘要 XI 英文摘要 XII 第一章文獻檢討 1 一、Mozzarella cheese 1 (一)高含水量之 Mozzarella cheese 1 (二)低含水量之 Mozzarella cheese 1 二、Mozzarella cheese製程 4 (一)原料乳之選擇 4 (二)發酵菌元 5 (三)凝乳酶之添加及凝乳之生成 5 (四)凝乳之截切、加溫、乳清排除 6 (五)搓揉、拔絲 9 三、影響Mozzarella cheese組成及官能品評特性 13 四、全脂乾酪與低脂乾酪之比較 15 (一)風味 17 (二)質地 17 (三)產率 17 (四)顏色 19 五、改善低脂乾酪缺陷的方式 24 六、Lactococcus lactis subsp. cremoris T1 24 (一)Lactococcus lactis subsp. cremoris 25 (二)Lactococcus lactis subsp. cremoris T1 29 第二章 材料與方法 29 第一部分:利用最適化生產Lactococcus lactis subsp. cremoris T1培養基 35 第二部分:添加Lactococcus lactis subsp. cremoris T1菌添加於低脂乾酪之製備 35 第三部分:利用Lactococcus lactis subsp. cremoris T1菌製備Mozzarella cheese之抗腸炎機能性評估 49 第二章結果與討論 54 第一節:培養基之最適化 54 氮源與碳源篩選試驗 54 一、反應曲面模式之建立 55 二、模式契合度之探討 55 三、驗證 56 第二節:實驗室利用Lactococcus lactis subsp. cremoris T1菌製程新鮮乾酪 65 一、基本成分及質地分析 65 第三節:工廠大量製造 71 一、低脂 Mozzarella乾酪之基本成分分析與官能品評 71 二、儲存試驗 72 三、水分及滴定酸度 72 四、質地之變化 73 第四節:低脂乾酪抗腸炎之機能性評估 85 一、RAW 264.7小鼠巨噬細胞 85 二、腸道上皮細胞體外試驗 89 第三章結論 93 參考文獻 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 免疫調節 | zh_TW |
| dc.subject | 低脂乾酪 | zh_TW |
| dc.subject | 乳酸菌Lactococcus lactis subsp. cremoris T1 | zh_TW |
| dc.subject | 胞外多醣體 | zh_TW |
| dc.subject | Exopolysaccharide | en |
| dc.subject | Lactococcus lactis subsp. cremoris T1 | en |
| dc.subject | Immunoregulatory | en |
| dc.subject | Reduced-fat cheese | en |
| dc.title | 藉由培養Lactococcus lactis subsp. cremoris T1製作之低脂乾酪其物理及機能性之變化 | zh_TW |
| dc.title | Effect of inoculating Lactococcus lactis subsp. cremoris T1 on physical and functional characteristics of reduced-fat cheese | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林慶文(Cing-Wen Lin),黃英豪(Ying-Hao Huang),陳小玲(Siao-Ling Jhen),劉?睿(Je-Ruei Liu) | |
| dc.subject.keyword | 胞外多醣體,乳酸菌Lactococcus lactis subsp. cremoris T1,免疫調節,低脂乾酪, | zh_TW |
| dc.subject.keyword | Exopolysaccharide,Lactococcus lactis subsp. cremoris T1,Immunoregulatory,Reduced-fat cheese, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
