Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63686
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor溫良碩(Liang-Saw Wen)
dc.contributor.authorPei-Hsuan Linen
dc.contributor.author林佩萱zh_TW
dc.date.accessioned2021-06-16T17:16:24Z-
dc.date.available2013-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation蕭世輝(2009)台灣北部海域橈足類種類組成與重金屬元素含量研究。國立台灣海洋大學海洋生物研究所博士論文。
海洋學門資料庫 http://www.odb.ntu.edu.tw/bathy/?page_id=17
Boothe, P. N., and Knauer, G. A. (1972). The Possible Importance of Fecal Material in the Biological Amplification of Trace and Heavy Metals. Limnology and Oceanography, 17(2), 270-274.
Bowen, H. J. M. (1979). Environmental chemistry of the elements. New York: Academic Press.
Brugmann, L., and Hennings, U. (1994). Metals in Zooplankton from the Baltic Sea, 1980–84. Chemistry and Ecology, 9(2), 87-103.
Cabana, G., and Rasmussen, J. B. (1994). Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature, 372(6503), 255-257.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Lin, J.-C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651.
Depledge, M. H., Forbes, T. L., and Forbes, V. E. (1993). Evaluation of cadmium, copper, zinc, and iron concentrations and tissue distributions in the benthic crab, Dorippe granulata (De Haan, 1841) from Tolo Harbour, Hong Kong.
Environmental Pollution, 81(1), 15-19.
Elton, C. S. (1927). Animal ecology. London: Sedgwick and Jackson.
Fisher, N. S., Teyssie, J.-L., Fowler, S. W., and Wang, W.-X. (1996). Accumulation and Retention of Metals in Mussels from Food and Water: A Comparison under Field and Laboratory Conditions. Environmental Science & Technology, 30(11), 3232-3242.
Florence, T. M. (1986). Electrochemical approaches to trace element speciation in waters. A review. Analyst, 111(5), 489-505.
Fowler, S. W. (1977). Trace elements in zooplankton particulate products. Nature, 269(5623), 51-53.
Fowler, S. W., and Knauer, G. A. (1986). Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progress In Oceanography, 16(3), 147-194.
Frausto da Silva, J. J. R., and Williams, R. J. P. (2001). The biological chemistry of the elements.
Ho, T.-Y. (2006). The trace metal composition of marine microalgae in cultures and natural assemblages. In D. V. Subba Rao (Ed.), Algal cultures, analogues of blooms and applications (Vol. 1, pp. 271-299).
Ho, T.-Y., Chou, W.-C., Wei, C.-L., Lin, H.-L., Wong, G. T. F., and Lin, H.-L. (2010). Trace metal cycling in the surface water of the South China Sea: Vertical fluxes, composition, and sources. Limnology and Oceanography, 55(5), 1807-1820.
Ho, T.-Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski, P. G., and Morel, F. M. M. (2003). THE ELEMENTAL COMPOSITION OF SOME MARINE PHYTOPLANKTON1. Journal of Phycology, 39(6), 1145-1159.
Ho, T.-Y., Wen, L.-S., You, C.-F., and Lee, D.-C. (2007). The trace-metal composition of size-fractionated plankton in the South China Sea: Biotic versus abiotic sources. Limnology and Oceanography, 52(5), 1776-1788.
Hook, S. E., and Fisher, N. S. (2001a). Reproductive toxicity of metals in calanoid copepods. Marine Biology, 138(6), 1131-1140.
Hook, S. E., and Fisher, N. S. (2001b). Sublethal effects of silver in zooplankton: Importance of exposure pathways and implications for toxicity testing. Environmental Toxicology and Chemistry, 20(3), 568-574.
Jiann, K.-T., and Wen, L.-S. (2012). Distribution and lability of dissolved iron in surface waters of marginal seas in southeastern Asia. Estuarine, Coastal and Shelf
Science, 100(0), 142-149.
Kahle, J., and Zauke, G. P. (2002). Bioaccumulation of trace metals in the calanoid copepod Metridia gerlachei from the Weddell Sea (Antarctica). Science of the Total Environment, 295(1–3), 1-16.
Kahle, J., and Zauke, G. P. (2003). Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere, 51(5), 409-417.
Liu, X.-J., Ni, I. H., and Wang, W.-X. (2002). Trophic transfer of heavy metals from freshwater zooplankton Daphnia magna to zebrafish Danio reiro. Water Research, 36(18), 4563-4569.
Martin, J. H. (1970). The Possible Transport of Trace Metals Via Moulted Copepod Exoskeletons. Limnology and ceanography, 15(5), 756-761.
Martin, J. H., and Knauer, G. A. (1973). The elemental composition of plankton. Geochimica et Cosmochimica Acta, 37(7), 1639-1653.
Morel, F. M. M., and Price, N. M. (2003). The Biogeochemical Cycles of Trace Metals in the Oceans. Science, 300(5621), 944-947.
Ng, T. Y. T., Rainbow, P. S., Amiard-Triquet, C., Amiard, J.-C., and Wang, W.-X. (2008). Decoupling of cadmium biokinetics and metallothionein turnover in a marine polychaete after metal exposure. Aquatic Toxicology, 89(1), 47-54.
Ng, T. Y. T., Rainbow, P. S., Amiard-Triquet, C., Amiard, J. C., and Wang, W.-X. (2007). Metallothionein turnover, cytosolic distribution and the uptake of Cd by the green mussel Perna viridis. Aquatic Toxicology, 84(2), 153-161.
Ni, I. H., Chan, S. M., and Wang, W.-X. (2005). Influences of salinity on the biokinetics of Cd, Se, and Zn in the intertidal mudskipper Periophthalmus cantonensis. Chemosphere, 61(11), 1607-1617.
Pempkowiak, J., Walkusz-Miotk, J., Bełdowski, J., and Walkusz, W. (2006). Heavy metals in zooplankton from the Southern Baltic. Chemosphere, 62(10), 1697-1708.
Petri, G., and Zauke, G. P. (1993). Trace-metals in crustaceans in the Antarctic Ocean. Ambio, 22, 529-536.
Presley, B. J., Taylor, R. J., and Boothe, P. N. (1990). Trace metals in gulf on Mexico oysters. Science of the Total Environment, 97–98(0), 551-593.
Protasowicki, M. (1991). Long-term studies on heavy metals in aquatic organisms from the River Odra mouth area. Acta Ichthyol. Piscatoria Suppl. XXI, 301-309.
Rainbow, P. S. (1989). Copper, cadmium and zinc concentrations in oceanic amphipod and euphausiid crustaceans, as a source of heavy metals to pelagic seabirds. Marine Biology, 103(4), 513-518.
Rainbow, P. S. (2007). Trace metal bioaccumulation: Models, metabolic availability and toxicity. Environment International, 33(4), 576-582.
Reinfelder, J. R., Fisher, N. S., Luoma, S. N., Nichols, J. W., and Wang, W.-X. (1998). Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach. Science of the Total Environment, 219(2–3), 117-135.
Ritterhoff, J., and Zauke, G.-P. (1997a). Bioaccumulation of trace metals in Greenland Sea copepod and amphipod collectives on board ship: verification of toxicokinetic model parameters. Aquatic Toxicology, 40(1), 63-78.
Ritterhoff, J., and Zauke, G.-P. (1997b). Influence of body length, life-history status and sex on trace metal concentrations in selected zooplankton collectives from the
Greenland Sea. Marine Pollution Bulletin, 34(8), 614-621.
Ritterhoff, J., and Zauke, G.-P. (1997c). Trace metals in field samples of zooplankton from the Fram Strait and the Greenland Sea. Science of the Total Environment, 199(3), 255-270.
Shi, D., and Wang, W.-X. (2004). Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn. Environmental Pollution, 132(2), 265-277.
Szefer, P., Skwarzec, B., and Koszteyn, J. (1985). The occurrence of some metals inmesozooplankton taken from the southern Baltic. Marine Chemistry, 17(3), 237-253.
Tang, D., and Morel, F. M. M. (2006). Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Marine Chemistry, 98(1), 18-30.
Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(8), 1273-1285.
Tessier, A., and Turner, D. R. (1995). Metal speciation and bioavailability in aquatic systems: John Wiley and Sons.
Tovar-Sanchez, A., Sanudo-Wilhelmy, S. A., Garcia-Vargas, M., Weaver, R. S., Popels, L. C., and Hutchins, D. A. (2003). A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Marine Chemistry, 82(1-2),
91-99.
Tsui, M. T. K., and Wang, W.-X. (2004). Temperature influences on the accumulation and elimination of mercury in a freshwater cladoceran, Daphnia magna. Aquatic Toxicology, 70(3), 245-256.
Turner, D. R., and Hunter, K. A. (2001). The biogeochemistry of iron in seawater: John Wiley and Sons.
Wang, W.-X. (2002). Interactions of trace metals and different marine food chains. Marine Ecology Progress Series, 243, 295-309.
Wang, W.-X., Dei, R. C. H., and Xu, Y. (2001). Cadmium uptake and trophic transfer in coastal plankton under contrasting nitrogen regimes. Marine Ecology Progress
Series, 211, 293298.
Wang, W.-X., and Fisher, N. S. (1998). Accumulation of Trace Elements in a Marine Copepod. Limnology and Oceanography, 43(2), 273-283.
Wang, W.-X., and Ke, C. (2002). Dominance of dietary intake of cadmium and zinc by two marine predatory gastropods. Aquatic Toxicology, 56(3), 153-165.
Wang, W.-X., and Rainbow, P. S. (2010). Significance of metallothioneins in metal accumulation kinetics in marine animals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 152(1), 1-8.
Wang, W.-X., Reinfelder, J. R., Lee, B. G., and Fisher, N. S. (1996). Assimilation and regeneration of trace elements by marine copepods. Limnology and oceanography, 41, 70-81.
Wang, X., and Zauke, G.-P. (2004). Size-dependent bioaccumulation of metals in the amphipod Gammarus zaddachi (Sexton 1912) from the River Hunte (Germany) and its relationship to the permeable body surface area. Hydrobiologia, 515(1), 11-28.
Weeks, J., Rainbow, P., and Moore, P. (1992). The loss, uptake and tissue distribution of copper and zinc during the moult cycle in an ecological series of talitrid amphipods (Crustacea:Amphipoda). Hydrobiologia, 245(1), 15-25.
Wen, L.-S., Stordal, M. C., Tang, D., Gill, G. A., and Santschi, P. H. (1996). An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase
speciation in seawater. Marine Chemistry, 55(1–2), 129-152.
Wotton, R. S. (1994). The biology of particles in aquatic systems (pp. 325).
Zauke, G. P., Clason, B., Savinov, V. M., and Savinova, T. (2003). Heavy metals of inshore Benthic invertebrates from the Barents Sea. Science of the Total Environment, 306(1–3), 99-110.
Zauke, G. P., Krause, M., and Weber, A. (1996). Trace metals in mesozooplankton of the North Sea: Concentrations in different taxa and preliminary results on bioaccumulation in copepod collectives (Calanus finmarchicus C-helgolandicus). Internationale Revue Der Gesamten Hydrobiologie, 81(1), 141-160.
Zauke, G. P., and Schmalenbach, I. (2006). Heavy metals in zooplankton and decapod crustaceans from the Barents Sea. Science of the Total Environment, 359(1-3), 283-294.
Zeng, J., and Wang, W.-X. (2011). Temperature and irradiance influences on cadmium and zinc uptake and toxicity in a freshwater cyanobacterium, Microcystis aeruginosa. Journal of Hazardous Materials, 190(1–3), 922-929.
Zhang, L., and Wang, W.-X. (2007). Waterborne cadmium and zinc uptake in a euryhaline teleost Acanthopagrus schlegeli acclimated to different salinities. Aquatic Toxicology, 84(2), 173-181.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63686-
dc.description.abstract微量金屬元素參與海洋生物體內的各種生理反應,當浮游植物進食後,微量元素即隨著食物鏈傳遞並累積在生物體內,而未被浮游動物利用的元素則經由代謝和排泄回到海水中。因此,了解浮游動物的代謝作用和攝食行為,探討微量元素在海洋浮游動物體內的反應,可讓我們進一步窺探海洋環境中微量元素生地化循環。本研究利用超純淨採樣分離方法(Ultraclean Size Fraction Techniques),以體型大小為基準,在台灣海峽至西菲律賓海海域間,採集浮游生物並區分為不同生長階段(10~63、63~153、>153、363~500、500~1000、1000~2000、>2000 μm),剖析基本元素及微量金屬元素含量。根據浸洗實驗得知,浮游動物體內的微量元素約佔73%,剩餘約27%則吸附在外骨骼表面上。浮游動物的Fe、Zn、Cu、Ni、Cd平均含量各為361±455、98.87±60.61、8.43±4.10、5.53±3.18以及3.02±2.02μg g-1,且隨著空間和生物體型大小改變,而有顯著差異。幾乎在所有研究海域中,Cu、Ni、Cd皆是大體型者含量較低,且Cd含量隨著每個食階提昇(體型增加)後約下降64%~79%,下降趨勢顯著;再者,隨著浮游動物食階增加,不同金屬和C、N、S的比值(TM/C、TM/N、TM/S)分布亦隨之改變。橈足類活體、殼體和碎屑金屬含量皆不同,Fe、Cu、Ni似乎多分布於殼體上,佔橈足類活體中各66%、64%與75%;相反地,殼體Cd 金屬只佔1%,其餘99%可能皆分布於軟組織內。餵食培養實驗亦發現,浮游動物體內的金屬含量將隨著食物來源的不同而產生差異。由此可知,浮游動物對於不同金屬的吸收、代謝和排除機制似乎不同。綜合實驗研究可知,不同食階之浮游動物對不同金屬的需求與反應作用顯然不同,微量元素累積程度會受到環境、體型、生理代謝反應與食物來源等因素影響。此外,浮游動物會主動累積必需元素,亦會主動排除毒素,影響海洋中微量元素的生地化循環。zh_TW
dc.description.abstractBioactive trace elements (Fe, Zn, Cu, Ni and Cd) were taken up by phytoplankton in euphotic zone through various biological processes. Accumulation in the zooplanktons mainly through feeding process (trophic transfer), any unassimilated trace elements will be rapidly packaged into fecal pellets and transported out to surface waters. However, zooplankton bio-concentration or trophic transfer of trace metals, whether caused by dietary behavior or metabolic function remain a main issue for trace metals biogeochemical cycle in marine environment. In this study, using ultraclean techniques, elemental and metals concentration of selected zooplanktons at various sizes (sizes in μm: 10~63, 63~153, 153~363, 363~500, 500~1000, 1000~2000, >2000) were analyzed. It was found, on average, that only ~73% of trace metals were intercellular, remained ~27% were adsorbed on exoskeleton. Concentrations of Fe, Zn, Cu, Ni and Cd in zooplanktons increased with sizes, on average, 361±455、98.87±60.61、8.43±4.10、5.53±3.18 and 3.02±2.02 μg g-1 respectively, with various metal to elemental ratios (TM:C, TM:N and TM:S). Fecal pellets, exoskeletons, and intracellular materials all show distinctive diverse metal concentration levels. Fe, Cu and Ni were mostly in exoskeleton (Fe: 66%, Cu: 64%, Ni:75%); but, only 1% for Cd. Incubation experiments also revealed that zooplanktons have different trace metals requirement at various growth stages, due to environmental conditions, trophic levels, metabolism mechanisms and food sources. Over all, these findings suggest that zooplankton were deliberately accumulated essential metals, not passively as previously believed. Metal detoxification is actively involved in its life cycles which have profound impact on biogeochemistry of trace metals in the ocean.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:16:24Z (GMT). No. of bitstreams: 1
ntu-101-R99241402-1.pdf: 6339063 bytes, checksum: 71ff4756dedd9641731684a9b963c372 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 .......................................i 
摘要 ..................................... ii 
Abstract ................................ iii 
目錄 ...................................... v 
圖目錄 .................................... vii 
表目錄 .....................................ix 
第一章  緒論 ............................... 1 
1. 1  微量金屬元素之生地化循環 ............. 1 
1. 2  浮游動物微量金屬含量 ................ 2 
1. 2. 1  環境差異 ......................... 3 
1. 2. 2  食性差異 ......................... 3 
1. 2. 3  種間差異 ......................... 4 
1. 3  研究目的 .......................... 5 
第二章  材料與方法........................... 8 
2. 1  採樣時間與研究區域 .................. 8 
2. 2  實驗設備與器材 ..................... 8 
2. 3  採樣方式與流程 ..................... 9 
2. 4  實驗與分析方法 ..................... 10 
2. 4. 1  現場實驗(一):浸洗實驗 ............ 10 
2. 4. 2  現場實驗(二):浮游動物培養實驗 ..... 11 
2. 4. 3  橈足類實驗 ....................... 11 
2. 4. 4  樣品消化及金屬元素分析 .............. 12 
2. 4. 5  C、N、S 分析 ..................... 13 
第三章  結果:浮游動物微量金屬含量.............. 23 
3. 1  殼體吸附金屬含量 ................... 23 
3. 1. 1  空白試劑檢驗 ...................... 23 
3. 1. 2  試劑差異 ......................... 23 
3. 2  浮游動物元素含量 .................... 24 
3. 2. 1  基本元素 C、N、S .................. 24 
3. 2. 2  Fe、Zn、Cu、Ni、Cd 之空間分布 ...... 24 
3. 2. 3  Fe、Zn、Cu、Ni、Cd 之食階分布 ...... 26 
3. 3  橈足類元素含量 ..................... 27 
3. 3. 1  基本元素 C、N、S .................. 27 
3. 3. 2  微量金屬 Fe、Zn、Cu、Ni、Cd ........ 28 
3. 3. 3  活體、殼體、碎屑的差異 .............. 29 
3. 4  食性與微量金屬累積 .................. 30 
3. 4. 1  浮游動物 Fe 含量 .................. 30 
3. 4. 2  浮游動物 Zn 含量 .................. 31 
3. 4. 3  浮游動物 Cu 含量 .................. 31 
3. 4. 4  浮游動物 Ni 含量 .................. 32 
3. 4. 5  浮游動物 Cd 含量 .................. 32 
第四章  討論................................. 55 
4. 1  金屬吸附作用 ....................... 55 
4. 2  浮游動物與橈足類金屬含量之食階變化 ..... 58 
第五章  結論................................. 75 
參考文獻 .................................... 76 
dc.language.isozh-TW
dc.subject食階zh_TW
dc.subject微量金屬zh_TW
dc.subject台灣海峽zh_TW
dc.subject生物累積zh_TW
dc.subject西菲律賓海zh_TW
dc.subject浮游動物zh_TW
dc.subjectzooplanktonen
dc.subjecttrophic levelen
dc.subjecttrace metalen
dc.subjectbioaccumulationen
dc.subjectTaiwan Straiten
dc.subjectwestern Philippine Seaen
dc.title海洋浮游動物體內的微量金屬元素zh_TW
dc.titleTrace metals in marine zooplanktonsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee簡國童(Kuo-Tung Jiann),林曉武(Saulwood Lin),鍾家祿(Jia-Lu Chung)
dc.subject.keyword食階,浮游動物,微量金屬,生物累積,台灣海峽,西菲律賓海,zh_TW
dc.subject.keywordzooplankton,trophic level,trace metal,bioaccumulation,Taiwan Strait,western Philippine Sea,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2012-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
Appears in Collections:海洋研究所

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
6.19 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved