Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6364
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭智馨(Chih-Hsin Cheng)
dc.contributor.authorDa-Fun Linen
dc.contributor.author林大方zh_TW
dc.date.accessioned2021-05-16T16:27:12Z-
dc.date.available2013-02-16
dc.date.available2021-05-16T16:27:12Z-
dc.date.copyright2013-02-16
dc.date.issued2013
dc.date.submitted2013-01-31
dc.identifier.citation張容蓉、鄒裕民,2007,炭化稻草對於2-氯酚之吸附,台灣農業化學與食品科學,第四十五卷第四/五期,206-217。
張瑀芳、林世宗、蔡呈奇,2006,臺灣東北部柳杉人工林土壤有機碳儲量的推估,台灣林業科學 21, 383-93.
陳思昀、賴朝明、柯光瑞,2011,稻殼生物炭改良劑對土壤性質、碳貯存及溫室氣體排放之影響,台灣農業化學與食品科學,第四十九卷第三期,131-140。
Addiscott, T.M., Thomas, D., 2000, Tillage, mineralization and leaching: phosphate, Soil & Tillage Research 53, 255-273.
Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S., 2012, Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water, Bioresource Technology 118, 536–544.
Almendros, G., Knicker, H., Francisco, J. Gonzalez-Vila, 2003 , Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy, Organic Geochemistry 34, 1559-1568.
Ameloot, N., Neve, D. S., Kanagaratnam Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y.N., Wolter Prins, W., Bouckaert, L., Steven Sleutel, S., Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils, Soil Biology & Biochemistry 57, 401-410.
An, D., Guo, Y., Zou, B., Zhu, Y., Zichen, w., 2011, A study on the consecutive preparation of silica powders and active carbon from rice husk ash, Biomass and Bioenergy 35, 1227-1234.
Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., Horie, T.,2009, Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield, Field Crops Research 111, 81-84.
Asmar, F., Eiland, F., Nielsen, N.E., 1994, Effect of extracellular-enzyme activities on solubilization rate of soil organic nitrogen, Biology and Fertility of Soils 17, 32-38.
Atkinson, C. J., Fitzgerald, J.D., Hipps N.A., 2010, Potential mechanisms for achieving agricultural benefits form biochar application to temperate soils: a review, Plant and Soil 337, 1-18.
Baldock, J.A., Smernik, R.J., 2002, Chenical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood, Organic Geochemistry 33, 1093-1109.
Brady, N., and Weil, R., 2008, The Nature and Properties of Soils, 14th Edition. Prentice Hall Inc, New Jersey, USA.
Brewer, C.E., Unger, R., Schmidt-Rohr, K., Brown, R.C., 2011, Criteria to select biochars for field studies based on biochar chemical properties, Bioenergy Research 4, 312-323.
Broaddus, G.M., York, J.E., Moseley, J.M., Factors affecting the levels of nitratel nitrogen in cured tobacco leaves, Tobacco Science 9, 149-157.
Bruun, E. W., Ambus, P., Egsgaard, H., Hauggaard-Nielsen, H., 2012, Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics, Soil Biology and Biochemistry 46, 73-79.
Chan, K. Y., Zwieyen, L. Van, Meazaros, I., Downie, A., Joseph, S., 2007, Agronomic values of greenwaste biochar as a soil amendment, Australian Journal of Soil Research 45, 629-634.
Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S., 2008, Using poultry litter biochars as soil amendments, Australian Journal of Soil Research 46, 437-444.
Chen, B., Zhou, D., Zhu, L., 2008, Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures, Environmental Science & Technology 42, 5137-5143.
Chen, B., Chen, Z., 2009, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere 76, 127-133.
Cheng C.H., Lehmann, J., Thies, J.E., Burton, S.D., Engelhard, M.H., 2006, Oxidation of black carbon by biotic and abiotic processes, Organic Geochemistry 2006, 1447-1488.
Cheng, C.H., Lehmann, J., Engelhard, M.H., 2008, Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence, Geochimica et Cosmochimica Acta 72, 1598-1610.
Chun, Y., Sheng, G., Chiou, C.T., Xing, B., 2004, Composition and sorptive properties of corp residue-drived chars, Environmental Science & Technology 38, 4649-4655.
Freitas, J.C.C, Bonagamba, T.J., Emmerich, F.G., 2001, Investigation of biomass- and polymer-based carbon materials using 13C high-resolution solid-state NMR, Carbon 39, 535-545.
Gaskin, J.W., Speir, R.A., Harris, K., Das, K.C., Lee, R.D., Morris, L.A., Fisher, D.S., 2010, Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient Status, and Yield, Agronomy Journal 102, 623-633.
Glaser, B., Lehmann, J., Zech, W., 2002, Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biology and Fertility of Soil 35, 219–230.
Grechi, I., Vivin, P., Hilbert, G., Milin, S., Robert, T., Gaudillere, J.P., 2007, Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine, Environmental and Experimental Botany 59, 139-149.
Hossain, M.K., Strezov, V., Chan, K.Y., Nelson, P.F., 2010, Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum), Chemosphere 78, 1167–1171.
Jeffery, S., Verheijena, F.G.A., van der Veldea, M. Bastos, A.C., 2011, A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis, Agriculture, Ecosystems & Environment 144, 175–187.
Karhu, K., Mattila, T., Bergstrom, I., Regina, K., 2011, Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study, Agriculture, Ecosystems and Environment 140, 309–313.
Keiluweit M., Peter S., Mark G.J., Markus K. 2010, Dynamic molecular structure of plant biomass-drived black barbon (biochar), Environment Science Technology 44, 1247-1253.
Kempers, A.J., 1974, Determination of sub-microquantities of ammonium and nitrates in soils with phenol, sodiumnitroprusside and hypochlorite, Geoderma 12, 201-206.
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G., 2012,Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties, Journal of Environmental Quality 41, 990-1000.
Kim, K. H., Kim, Jae-Young, Cho, Tae-Su, Choi, J.W., 2012, Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida), Bioresource Technology 188, 158-162.
Kordatos, K., Gavela, S., Ntziouni, A., Pistiolas, K.N., Kyritsi, A., Kasselouri-Rigopoulou, V., Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash, Microporous and Mesoporous Materials 115, 189-196.
Krishnarao, R.V., Subrahmanyam, J., Kumar, T.J., 2001, Studies on the formation of black particles in rice husk silica ash, Journal of the European Ceramic Society 21, 99-104.
Kuzyakov, Y., Friedel, J.K., Stahr, K., 2000, Review of mechanisms and quantificationof priming effects, Soil Biology & Biochemistry 32, 1485-1498.
Laird, D., Fleming, P., Wang, B., Horton, R., Karlen D., 2010, Biochar impact on nutrient leaching form a Midwestren agricultural soil, Geoderma, 158:436-442.
Lehmann, J., de Silva J.P. Jr, Steiner, C., Nehls, T., Zech, W., Glaser, B., 2003, Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments., Plant and Soil 249, 343–357
Lehmann, J., Joseph S., 2009, Biochar for environmental management: science and Technology, EarthScan, London.
McBeath, A.V., Smernik, R.J., Schneider, M.P.W, Schmidt, M.W.I, Plant, E.L., 2011, Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR, Organic Geochemistry 42, 1194-1202.
Mehlich, A., 1984. Mehlich 3 Soil Test Extractant: a modification of Mehlich 2
Extractant. Commun. Soil. Sci. Plan. 15, 1409–1416.
Mukherjee, A., Zimmerman, A.R., 2013, Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures, Geoderma 193–194, 122–130.
Nag, S. K., Kookana, R., Smith, L., Krull, E., Macdonald, L. M., Gill, Gurjeet, 2011, Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action, Chemosphere 84, 1572-1577.
Nguyen, T.H., Cho, H.H., Poster, D.L., Ball, W.P., 2007, Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char, Environmental Science & Technology 41, 1212-1217.
Noguera, D., Rondon, M., Laossi, K.R., Hoyos, V., Lavelle, P., Cruz de Carvalho, M.H., Barot, S., 2010, Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils, Soil Biology and Biochemistry 42, 1017-1027.
Novak, J.M., Busscher, W.J., Watts, D.W., Laird, D.A., Ahmedna, M.A., Niandou, M.A.S., Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult, Geoderma 154, 281-288.
Oguntunde, P.G., Abiodun, B.J., Ajayi, A.E., Van De Giesen, N., 2008, Effects of charcoal production on soil physical properties in Ghana, Journal of Plant Nutrition and Soil Science 171, 591–596.
Oguntunde, P.G., Fosu, M., Ajayi, A.E., Van De Giesen, N., 2004, Effects of charcoal production on maize yield, chemical properties and texture of soil, Biology and Fertility of Soils 39, 295–299.
Prendergast-Miller, M.T., Duvall,, M., Sohi, S.P., 2011, Localisation of nitrate in the rhizosphere of biochar-amended soils, Soil Biology and Biochemistry 43,2243-2246.
Qian, P. and Schoenau, J.J., 2002, Availability of nitrogen in solid manure amendments with different C:N ratios, Canadian Journal of Soil Sciences 82, 219-225.
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J.,Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil, Biology and Fertility of Soils 48, 271-284.
Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B., 2004, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose, Vibrational Spectroscopy 36, 23-40.
Sheng, G., Yang, Y., Huang, M., Yang, K., 2005, Influence of pH on pesticide sorption by soil containing wheat residue-derived char, Environmental Pollution 134, 457-463.
Solum, M.S., Pugmire, R.J., Jagtoyen, M., Derbyshire, F., 1995, Evolution of carbon structure in chemically actived wood, Carbon 33, 1247-1254.
Song, W., Guo, M., 2012, Quality variations of poultry litter biochar generated at different pyrolysis temperatures, Journal of Analytical and Applied Pyrolysis 94,138-145.
Spokas, K.A., Koskinen, W.C., Baker, J.M., Reiocosky, D.C., Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil, Chemosphere 77, 574-581.
Tagoe, S.O., Horiuchi, T., Matsui, T., 2008, Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean, Plant Soil 306, 211-220.
Uchimiya, M., Wartelle, L.H., Lima, I.M., Klasson, K.T., 2010. Sorption of deisopropylatrazine on broiler litter biochars, Journal of Agricultural and Food Chemistry 58, 12350-12356.
Warnock, D.D., Mummey, D.L., McBride, B., Major, J., Lehmann, J., Rillig, M.C., 2010, Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments, Applied Soil Ecology 46, 450–456.
Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., Chen, y., 2012, Chemical characterization of rice straw-derived biochar for soil amendment, Biomass and Bioenergy 47, 268-276.
Yanai, Y., Toyota, K., Okazaki, M., 2007, Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term experiments, Soil Science and Plant Nutrition 53, 181–188.
Yang, Y., Sheng, G., 2003, Enhance pestcide sorption by soils containing particulate matter from crop residue burns, Environmental Science & Technology 37, 3635-3639.
Yang, Y., Sheng, G., Huang, M., 2006, Bioacailability of diuron in soil containing wheat-straw-derived char, Science of the Total Environment 354, 170-178.
Yao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012, Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil, Chemosphere 89, 1467-1471.
Yao, F.X., Arbestain, M.C., Virgel, S., Blanco, F., Arostegui, J., Macia-Agullo, J.A., Macias, F., 2010, Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor, Chemosphere 80, 724-732.
Yu, X.Y., Ying, G.G., Kookana, R.S., 2006, Sorption and desorption behaviors of diuron in soils amended with charcoal, Journal of Agricultural and Food Chemistry 54, 8545-8550.
Yuan, J.H., Xu, R.K., Zhang, H., 2011, The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresource Technology 102, 3488–3497.
Zavalloni, C., Alberti, G., Biasiol, S., Vedove, G.D., Fornasier, F., Liu, J., Peressotti, A., 2011, Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study, Applied Soil Ecology 50, 45–51.
Zheng W., Mingxin G., Teresa C., Douglas N. B., Nandakishore R., 2010, Sorption properties of greenwaste biochar for two triazine peaticides, Journal of Hazardous Materials 181, 121-126.
Zimmerman, A. R., 2010, Abiotic and microbial oxidation of laboratory-produced black carbon (biochar), Environmental Science & Technology 44, 1295-1301.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6364-
dc.description.abstract生物炭的農業應用是目前熱門的環境議題,將生物炭與土壤混合後,不僅能夠改善土壤的物理及化學性質,提昇土壤的生產力,並能吸附土壤重金屬離子與有機污染物,且生物炭的穩定結構能長期將有機物儲存在土壤中,達到增加土壤固碳的效果。不過,生物炭的性質受到原料與熱解溫度的影響,因而影響生物炭的農業應用效果,若能了解材料與製作方法的差異,將可使生物炭的應用效果發揮到最大。本研究選用三種台灣常見的農林廢棄物為材料,包含稻殼 (RH)、柳杉木材 (CJ) 與田菁植體 (SR),分別以300℃(300)與500℃(500)加熱製作成生物炭,除了利用傅立葉轉換紅外線光譜與碳-13核磁共振等技術,分析生物炭的各項性質與探討原料種類與熱解溫度的影響外,並以大肚山高風化酸性紅壤為對象,進行管柱淋洗與盆栽試驗,由作物生產、養分保持能力與殺草劑效果等方面,評估生物炭農業施用的效果。研究結果顯示,生物炭受到原料種類與熱解溫度影響甚大,隨熱解溫度增加,不僅碳含量增加,芳香族構造也相對增高,植物有效性無機養分元素 (e.g., P、Ca、K) 也愈高,但CEC則隨溫度上升而下降。三種材料間,以田菁生物炭的養分含量與陽離子交換容量最高,而柳杉生物炭最低。管柱淋洗試驗的結果顯示,生物炭對無機態氮、磷與K、Ca、Mg等金屬元素的淋洗沒有顯著的影響,但SR-300與SR-500由於交換性金屬含量較高的關係,反而會使金屬離子淋洗量增加。在作物生產方面,未炭化植體在土壤中引起固定化作用,消耗土壤中的無機養分含量,因此使作物乾重顯著下降,生物炭添加則無法顯著提昇作物乾重。經過施肥處理後,除SR-500有較高產量外,其餘處理 (控制組、未炭化植體添加、300℃生物炭添加與500℃生物炭添加) 並無顯著差異。SR-500較高的作物生物量可能是顯著提高土壤pH值,使施肥處理效果增加所造成的。此外,添加生物炭會顯著降低達有龍施用效果,且300℃生物炭較500℃生物炭的影響效果更為顯著。三種材料間以田菁生物炭的影響效果最大,甚至在6.0 mg kg-1的施用量下,黑麥草仍有高達超過80%以上的存活率。綜合各項結果,熱解溫度與生質材料的差異,其製成生物炭的性質也不同。本實驗發現以SR-300與SR-500具有較高的pH值、養分含量與陽離子交換容量,並在土壤中可能提高土壤pH值與養分有效性,使作物乾重生長上升,但卻顯著降低了殺草劑的使用效果。綜合各項結果,田菁生物炭具有提昇土壤酸鹼度的能力,且在土壤中能夠提供K+、Ca2+、Mg2+等金屬離子,但在土壤中會明顯的降低殺草劑的有效性。SR-500殺草劑施用效果下降的幅度低於SR-300,若使用SR-500則可能在提高作物乾重生產的同時,保持殺草劑的施用效果。zh_TW
dc.description.abstractAmending biochar in soils has been proposed as a mean to sequestrate carbon and to mitigate the increasing atmospheric CO2 concentration and global warming. In addition, biochar can improve soil fertility, chemo-physical properties, and crop yield. Thus, using biochar in soils has recently been implemented in many experiments worldwide. However, the properties of biochar would change with different feedstock and pyrolytical processes. It is important to understand how feedsotck and pyrolytical processes influence the properties of biochar in order to have its suitable agricultural application. I selected three common agricultural wastes in Taiwan, including rice husk (RH), Cryptomeria japonica woods (CJ) and Sesbania roxburghii (SR), as the feedstock for making biochar. The feedstock was pyrolyzied at 300℃and 500℃, respectively. Firstly, the chemical and spectral (e.g., FTIR and solid-state 13C NMR) analyses were applied to determine the properties and structure of biochars. And then, the column leaching and pot experiments were applied to understand the nutrients release and uptake of biochars. Finally, a bioassay of herbicide efficacy experiment was conducted to evaluate the effect of amending biochar on inactivating herbicide effectiveness. The results showed that biochar properties were different under different feedstock and pyrolytical temperature. The biochar derived from CJ had the highest carbon content, while SR biochar had the higher nutrient content. Higher pyrolytical temperature resulted in higher carbon and nutrients (e.g., P, Ca, Mg, K) content, and also altered the structure from O-alkyl C of raw feedstock to aromatic-C for biochars. Most of biochar application did not increase the dry mass of corn significantly even with ferilizer treatment except the biochar made from SR. In the soil column leaching experiment, biochar had no significant effects on nitrate-N, ammonium-N and phospahte-P . The biochar application could not change the leaching of K+, Ca2+ and Mg2+ except SR biochar. SR biochar increase the leaching of K+ and Ca2+due to the high content of extractable ion. In the bioassay of herbicide efficacy experiment, 300℃ biochar could decrease the bioavailability of diuron more efficient than 500℃ biochar
because of the combination of partition and adsorption. SR-300 and SR-500 biochar could reduce the bioavailability of diuron at 1.5 and 6.0 mg kg-1. To summerize, the SR biochar had higher pH and extractable ion and it could reduce the bioavailability of diuron efficiently. However, SR-500 could retain more bioavailability of diuron efficiently then SR-300. Using SR-500 as soil amendment might increase the soil productivity and retain bioavailability of diuron efficiently.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:27:12Z (GMT). No. of bitstreams: 1
ntu-102-R99625021-1.pdf: 1218382 bytes, checksum: 2da925465748d0be5d7923b6da1c8d97 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 i
ABSTRACT iii
目錄 v
表目錄 vii
圖目錄 viii
1. 前言 1
2. 材料與方法 3
2.1 土壤 3
2.2生物炭材料與製作方法 3
2.2 土壤、未炭化植體與生物炭化學性質分析 4
2.3傅立葉轉換紅外線光譜分析(Fourier transform infrared, FTIR) 6
2.4 固態核磁共振光譜分析 (Solid state nuclear magnetic resonance, NMR) 7
2.5植體與生物炭養分管柱淋洗試驗: 8
2.5.1實驗裝置 8
2.5.2淋洗與養分元素分析 8
2.6盆栽試驗 9
2.6.1 試驗處理 9
2.6.3 盆栽試驗設計 9
2.6.4葉片SPAD值與土壤pH值測量 10
2.6.5 土壤pH值、植體乾重 10
2.7農藥試驗 10
2.8 統計分析 11
3. 實驗結果 12
3.1 生物炭性質 12
3.1.1 生物炭化學性質 12
3.1.2 FTIR圖譜分析 13
3.1.3 NMR圖譜分析 15
3.2土壤管柱淋洗試驗 16
3.2.1 氮與磷的淋洗 16
3.2.2 鉀、鈣、鎂元素的淋洗 17
3.3 盆栽試驗 18
3.3.1 作物乾重與根莖比 18
3.2.2 土壤pH值與葉片SPAD值 20
3.4 農藥試驗 21
4. 討論 22
4.1 生物炭性質 22
4.1.1 化學性質 22
4.1.2 FTIR 23
4.1.3 NMR 24
4.2 植體與生物炭添加物對土壤養分淋洗的影響 25
4.2.1 未炭化植體添加對淋洗的影響 25
4.2.2 生物炭與土壤混合對淋洗的影響 26
4.3 植體與生物炭對作物生長的影響 28
4.4 農藥試驗 31
5. 總結 34
6. 參考文獻 35
附錄 61
dc.language.isozh-TW
dc.title生物炭材料與熱解溫度對其農藝性能的影響zh_TW
dc.titleEffects of Feedstock and Pyrolysis Temperature on Agronomic Performance of Biocharen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee賴朝明(Chao-Ming Lai),陳建德(Chien-Ten Chen)
dc.subject.keyword生物炭,傅立葉轉換紅外線光譜,碳-13核磁共振,作物生產,養分保持,淋洗作用,分配作用,吸附作用,殺草劑,達有龍,zh_TW
dc.subject.keywordbiochar,FTIR,C-13 NMR,crop production,nutrient retention,nutrient leaching,partition,adsorption,herbicides,diuron,en
dc.relation.page63
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-01-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf1.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved