Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63647
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君(I-Chun Cheng)
dc.contributor.authorBo-Shiung Wangen
dc.contributor.author王柏雄zh_TW
dc.date.accessioned2021-06-16T17:15:36Z-
dc.date.available2015-08-27
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-17
dc.identifier.citation[1] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, 'A comprehensive review of ZnO materials and devices,' Journal of Applied Physics, vol. 98, pp. 041301-1-3, 2005.
[2] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, 'Recent progress in processing and properties of ZnO,' Progress in Materials Science, vol. 50, pp. 293-340, 2005.
[3] D. C. Look, J. W. Hemsky, and J. R. Sizelove, 'Residual native shallow donor in ZnO,' Physical Review Letters, vol. 82, pp. 2552-2555, 1999.
[4] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, 'Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,' Applied Physics Letters, vol. 82, pp. 1117-1119, 2003.
[5] P. K. Shin, Y. Aya, T. Ikegami, and K. Ebihara, 'Application of pulsed laser deposited zinc oxide films to thin film transistor device,' Thin Solid Films, vol. 516, pp. 3767-3771, 2008.
[6] S. J. Lim, S. J. Kwon, and H. Kim, 'ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor,' Thin Solid Films, vol. 516, pp. 1523-1528, 2008.
[7] J. Zhu, A. Y. Kuznetsov, M. S. Han, Y. S. Park, H. K. Ahn, J. W. Ju, and I. H. Lee, 'Structural and optical properties of ZnO/Mg0.1Zn0.9O multiple quantum wells grown on ZnO substrates,' Applied Physics Letters, vol. 90, pp. 211909-1-3, 2007.
[8] K. Ogata, K. Sakurai, S. Fujita, S. Fujita, and K. Matsushige, 'Effects of thermal annealing of ZnO layers grown by MBE,' Journal of Crystal Growth, vol. 214–215, pp. 312-315, 2000.
[9] B. P. Zhang, N. T. Binh, K. Wakatsuki, C. Y. Liu, and Y. Segawa, 'Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect,' Applied Physics Letters, vol. 86, pp. 032105-1-3, 2005.
[10] S. Ilican, Y. Caglar, and M. Caglar, 'Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method,' Journal of Optoelectronics and Advanced Materials, vol. 10, pp. 2578-2583, 2008.
[11] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, 'Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,' Applied Physics Letters, vol. 77, pp. 250-252, 2000.
[12] P. Nunes, E. Fortunato, and R. Martins, 'Influence of the post-treatment on the properties of ZnO thin films,' Thin Solid Films, vol. 383, pp. 277-280, 2001.
[13] B. C. Mohanty, Y. H. Jo, D. H. Yeon, I. J. Choi, and Y. S. Cho, 'Stress-induced anomalous shift of optical band gap in ZnO:Al thin films,' Applied Physics Letters, vol. 95, pp. 062103-1-3, 2009.
[14] P. Y. Kim, J. Y. Lee, H. Y. Lee, S. J. Lee, and N. I. Cho, 'Structure and properties of IZO transparent conducting thin films deposited by PLD method,' Journal of the Korean Physical Society, vol. 53, pp. 207-211, 2008.
[15] S. Ilican, Y. Caglar, M. Caglar, and B. Demirci, 'Polycrystalline indium-doped ZnO thin films: preparation and characterization,' Journal of Optoelectronics and Advanced Materials, vol. 10, pp. 2592-2598, 2008.
[16] A. Kalaivanan, S. Perumal, N. Neelakanda Pillai, and K. R. Murali, 'Characteristics of GZO thin films deposited by sol–gel dip coating,' Materials Science in Semiconductor Processing, vol. 14, pp. 94-96, 2011.
[17] K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, and Z. S. Hu, 'Surface characteristics, optical and electrical properties on sol-gel synthesized Sn-doped ZnO thin film,' Materials Transactions, vol. 51, pp. 1340-1345, 2010.
[18] C. X. Cong, B. Yao, Q. J. Zhou, and J. R. Chen, 'Effect of growth ambient on the structure and properties of MgxZn1-xO thin films prepared by radio-frequency magnetron sputtering,' Journal of Physics D-Applied Physics, vol. 41, pp. 105303-1-5, 2008.
[19] K. P. Hsueh, C. T. Pan, C. T. Li, H. C. Lin, Y. M. Hsin, and J. I. Chyi, 'Temperature-dependent characteristics of a GaN/InGaN/ZnO heterojunction bipolar transistor,' Journal of The Electrochemical Society, vol. 157, pp. H381-H383, 2010.
[20] S. Ueno and S. Fujihara, 'Controlled synthesis of nanostructured ZnO films for use in dye-sensitized solar cells,' Journal of The Electrochemical Society, vol. 158, pp. K1-K5, 2011.
[21] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, 'Recent advances in processing of ZnO,' Journal of Vacuum Science & Technology B, vol. 22, pp. 932-948, 2004.
[22] P. K. Weimer, 'TFT - new thin-film transistor,' Proceedings of the Institute of Radio Engineers, vol. 50, pp. 1462-1469, 1962.
[23] P. G. Lecomber, W. E. Spear, and A. Ghaith, 'Amorphous-silicon field-effect device and possible application,' Electronics Letters, vol. 15, pp. 179-181, 1979.
[24] A. J. Snell, W. E. Spear, P. G. Lecomber, and K. Mackenzie, 'Application of amorphous-silicon field-effect transistors in integrated-circuits,' Applied Physics a-Materials Science & Processing, vol. 26, pp. 83-86, 1981.
[25] R. L. Hoffman, B. J. Norris, and J. F. Wager, 'ZnO-based transparent thin-film transistors,' Applied Physics Letters, vol. 82, pp. 733-735, 2003.
[26] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, 'Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,' Journal of Applied Physics, vol. 93, pp. 1624-1630, 2003.
[27] B. J. Norris, J. Anderson, J. F. Wager, and D. A. Keszler, 'Spin-coated zinc oxide transparent transistors,' Journal of Physics D-Applied Physics, vol. 36, pp. L105-L107, 2003.
[28] Y. Kwon, Y. Li, Y. W. Heo, M. Jones, P. H. Holloway, D. P. Norton, Z. V. Park, and S. Li, 'Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel,' Applied Physics Letters, vol. 84, pp. 2685-2687, 2004.
[29] R. L. Hoffman, 'ZnO-channel thin-film transistors: Channel mobility,' Journal of Applied Physics, vol. 95, pp. 5813-5819, 2004.
[30] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, 'Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,' Nature, vol. 432, pp. 488-492, 2004.
[31] A. Suresh, P. Wellenius, V. Baliga, H. Luo, L. M. Lunardi, and J. F. Muth, 'Fast all-transparent integrated circuits based on indium gallium zinc oxide thin-film transistors,' Electron Device Letters, IEEE, vol. 31, pp. 317-319, 2010.
[32] S. Arulkumaran, T. Egawa, H. Ishikawa, and J. Jimbo, 'Characterization of different-Al-content AlxGa1-xN/GaN heterostructures and high-electron-mobility transistors on sapphire,' Journal of Vacuum Science & Technology B, vol. 21, pp. 888-894, 2003.
[33] S. Sasa, T. Hayafuji, M. Kawasaki, K. Koike, M. Yano, and M. Inoue, 'Improved stability of high-performance ZnO/ZnMgO hetero-MISFETs,' IEEE Electron Device Letters, vol. 28, pp. 543-545, 2007.
[34] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, 'High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer,' Applied Physics Letters, vol. 86, pp. 013503-1-3, 2005.
[35] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, C. H. Park, and D. A. Keszler, 'Transparent thin-film transistors with zinc indium oxide channel layer,' Journal of Applied Physics, vol. 97, pp. 064505-1-3, 2005.
[36] J. H. Noh, S. Y. Ryu, S. J. Jo, C. S. Kim, S. W. Sohn, P. D. Rack, D. J. Kim, and H. K. Baik, 'Indium oxide thin-film transistors fabricated by RF sputtering at room temperature,' IEEE Electron Device Letters, vol. 31, pp. 567-569, 2010.
[37] Dhananjay, C. W. Chu, C. W. Ou, M. C. Wu, Z. Y. Ho, K. C. Ho, and S. W. Lee, 'Complementary inverter circuits based on p-SnO2 and n-In2O3 thin film transistors,' Applied Physics Letters, vol. 92, 2008.
[38] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, 'MgxZn1-xO as a II-VI widegap semiconductor alloy,' Applied Physics Letters, vol. 72, pp. 2466-2468, 1998.
[39] C. I. Huang, H. A. Chin, Y. R. Wu, I. C. Cheng, J. Z. Chen, K. C. Chiu, and T. S. Lin, 'Mobility enhancement of polycrystalline MgZnO/ZnO thin film layers with modulation doping and polarization effects,' IEEE Transactions on Electron Devices, vol. 57, pp. 696-703, 2010.
[40] H. A. Chin, I. C. Cheng, C. I. Huang, Y. R. Wu, W. S. Lu, W. L. Lee, J. Z. Chen, K. C. Chiu, and T. S. Lin, 'Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process,' Journal of Applied Physics, vol. 108, pp. 054503-1-4, 2010.
[41] A. A. Iliadis, S. Krishnamoorthy, W. Yang, S. Choopun, R. D. Vispute, and T. Venkatesan, 'Structural, optical and electrical characterization of ZnO/Zn0.8Mg0.2O quantum wells for UV applications,' Photodetector Materials and Devices VII, vol. 4650, pp. 67-74, 2002.
[42] T. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, 'ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region,' Applied Physics Letters, vol. 84, pp. 5359-5361, 2004.
[43] M. J. Powell, 'The physics of amorphous-silicon thin-film transistors,' IEEE Transactions on Electron Devices, vol. 36, pp. 2753-2763, 1989.
[44] J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, 'Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors,' Applied Physics Letters, vol. 93, pp. 123508-1-3, 2008.
[45] A. Suresh, 'Amorphous indium gallium zinc oxide thin-film transistors, non-volatile memory and circuits for transparent electronics,' North Carolina State University Ph.D. thesis, p. 16, 2009.
[46] 邱義忠, '奈米晶矽薄膜機械性質及其在薄膜電晶體應用之研究,' 台灣大學碩士論文, pp. 22-25, 2008.
[47] 蔡宜軒, '下閘極氧化鋅鎂薄膜電晶體之電穩定性研究,' 台灣大學碩士論文, pp. 8-12, 2011.
[48] A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. Lecomber, and A. J. Hughes, 'Application of amorphous-silicon field-effect transistors in addressable liquid-crystal display panels,' Applied Physics, vol. 24, pp. 357-362, 1981.
[49] S.-M. Kang and Y. Leblebici, 'CMOS Digital Integrated Circuits: Analysis and Design, 3/e,' McGraw Hill, 2002.
[50] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, 'Conductivity behavior in polycrystalline semiconductor thin film transistors,' Journal of Applied Physics, vol. 53, pp. 1193-1202, 1982.
[51] T. Ohgaki, N. Ohashi, H. Kakemoto, S. Wada, Y. Adachi, H. Haneda, and T. Tsurumi, 'Growth condition dependence of morphology and electric properties of ZnO films on sapphire substrates prepared by molecular beam epitaxy,' Journal of Applied Physics, vol. 93, pp. 1961-1965, 2003.
[52] T. R. Lenka and A. K. Panda, 'Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs/based HEMT,' Semiconductors, vol. 45, pp. 650-656, 2011.
[53] K. Masuko, A. Ashida, T. Yoshimura, and N. Fujimura, 'Spin-dependent transport in a ZnMnO/ZnO heterostructure,' Journal of Applied Physics, vol. 103, 2008.
[54] H. Tampo, H. Shibata, K. Matsubara, A. Yamada, P. Fons, S. Niki, M. Yamagata, and H. Kanie, 'Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radical source molecular beam epitaxy,' Applied Physics Letters, vol. 89, pp. 132113-1-3, 2006.
[55] http://0rz.tw/Lkn5n.
[56] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, 'Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,' Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
[57] P. Gopal and N. A. Spaldin, 'Polarization, piezoelectric constants, and elastic constants of ZnO, MgO, and CdO,' Journal of Electronic Materials, vol. 35, pp. 538-542, 2006.
[58] 秦懷安, '氧化鎂鋅/氧化鋅多晶異質結構系統之電性探討,' 台灣大學碩士論文, pp. 8-9, 2010.
[59] http://www.ajaint.com/whatis.htm.
[60] http://wwwold.ece.utep.edu/research/webedl/cdte/Fabrication/index.htm.
[61] http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html.
[62] P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, 'Luminescence mechanism of ZnO thin film investigated by XPS measurement,' Applied Physics A: Materials Science & Processing, vol. 90, pp. 317-321, 2008.
[63] M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, 'Surface characterization of transparent conductive oxide Al-doped ZnO films,' Journal of Crystal Growth, vol. 220, pp. 254-262, 2000.
[64] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, 'X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,' Applied Surface Science, vol. 158, pp. 134-140, 2000.
[65] A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, 'Quantum hall effect in polar oxide heterostructures,' Science, vol. 315, pp. 1388-1391, 2007.
[66] F. Zhou, H. P. Lin, L. Zhang, J. Li, X. W. Zhang, D. B. Yu, X. Y. Jiang, and Z. L. Zhang, 'Top-gate amorphous IGZO thin-film transistors with a SiO buffer layer inserted between active channel layer and gate insulator,' Current Applied Physics, vol. 12, pp. 228-232, 2012.
[67] J. H. Chung, J. Y. Lee, H. S. Kim, N. W. Jang, and J. H. Kim, 'Effect of thickness of ZnO active layer on ZnO-TFT's characteristics,' Thin Solid Films, vol. 516, pp. 5597-5601, 2008.
[68] J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, 'Full-swing InGaZnO thin film transistor inverter with depletion load,' Japanese Journal of Applied Physics, vol. 48, pp. 100202-1-3, 2009.
[69] http://accuratus.com/alumox.html.
[70] L. Zhang, J. Li, X. W. Zhang, X. Y. Jiang, and Z. L. Zhang, 'High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature,' Applied Physics Letters, vol. 95, pp. 072112-1-3, 2009.
[71] K. Okamura, D. Nikolova, N. Mechau, and H. Hahn, 'Appropriate choice of channel ratio in thin-film transistors for the exact determination of field-effect mobility,' Applied Physics Letters, vol. 94, pp. 183503-1-3, 2009.
[72] H. N. Lee, J. Kyung, M. C. Sung, D. Y. Kim, S. K. Kang, S. J. Kim, C. N. Kim, H. G. Kim, and S. T. Kim, 'Oxide TFT with multilayer gate insulator for backplane of AMOLED device,' Journal of the Society for Information Display, vol. 16, pp. 265-272, 2008.
[73] W. E. Bowen, W. M. Wang, and J. D. Phillips, 'Complementary thin-film electronics based on n-channel ZnO and p-channel ZnTe,' IEEE Electron Device Letters, vol. 30, pp. 1314-1316, 2009.
[74] K.-Y. Chan, E. Bunte, D. Knipp, and H. Stiebig, 'Thin-film inverters based on high mobility microcrystalline silicon thin-film transistors,' Solid-State Electronics, vol. 52, pp. 914-918, 2008.
[75] H. J. Luo, P. Wellenius, L. Lunardi, and J. F. Muth, 'Transparent IGZO-based logic gates,' IEEE Electron Device Letters, vol. 33, pp. 673-675, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63647-
dc.description.abstract由於單晶異質結構不適合於低成本、大面積的電子元件應用,所以我們探討多晶系統異質結構並期望能進一步應用於工業化中。
在本論文中使用射頻磁控濺鍍法在室溫下成長氧化鋅薄膜。首先我們藉由GIXRD、SEM、AFM、XPS分析來討論未經處理與後退火處理對氧化鋅薄膜(15nm)的影響。之後我們探討氧化鎂鋅/氧化鋅異質結構的極化效應。由於氧化鋅結晶程度的改善,我們可以觀察到極化效應在氧化鎂鋅/氧化鋅異質結構中,且片載子濃度隨著氧化鎂鋅中鎂成分的增加而提升。
接著我們在玻璃基板上製作氧化鎂鋅/氧化鋅異質接面薄膜電晶體。我們發現氧化鋅的厚度與鎂的成分會強烈影響電晶體的I-V曲線。由於極化效應與屏蔽效應的關係,氧化鎂鋅/氧化鋅異質結構的電晶體開電流部分較對照的氧化鋅電晶體高一至兩個數量級,臨界電壓隨鎂成分增加而減小。我們發現氧化鋅厚度對氧化鎂鋅/氧化鋅電晶體的影響,較厚氧化鋅厚度觀察到有較強的極化效應。另一方面對孤立氧化鎂鋅/氧化鋅通道層可有效降低關電流。
最後我們選用Mg0.2Zn0.8O/ZnO(15nm) 薄膜電晶體做成N-MOS反向器,其在β=15、操作電壓18V下增益為19.6。
關鍵字:射頻磁控濺鍍法、氧化鋅、薄膜電晶體、極化效應
zh_TW
dc.description.abstractDue to the single-crystalline heterostructures are not suitable for low-cost large-area electronic applications, so we study the polycrystalline heterostructure material system and hope that it can be further applied in industry.
In this thesis, ZnO thin films are grown by RF-sputtering at room temperature. First, we investigate the properties of the as-deposited and 600°C post-annealed ZnO(15nm) thin films by GIXRD, SEM, AFM, and XPS. Then we studied the electrical properties of the MgZnO/ZnO heterostructures. Polarization effect is observed only in the heterostructures with post-annealed ZnO due to the reinforcement of the grain formation in ZnO. Sheet carrier concentration of the MgZnO/ZnO heterostructures increases as the Mg content in the MgZnO layer is raised.
Then, we demonstrate the rf-sputtered MgZnO/ZnO heterostructure thin film transistors on the glass substrates. We found that the I-V characteristics of the TFTs is strongly dependent on the thickness of ZnO and Mg content. Due to the polarization effect and screening effect, the on current of the MgZnO/ZnO TFT is about one to two orders of magnitude larger than that of the counterpart ZnO TFT and the threshold voltage decreases as the Mg content increases. In addition, the off current can be effectively reduced due to isolated active layer of MgZnO/ZnO.
Finally, we fabricate the N-MOS inverter composed of Mg0.2Zn0.8O/ZnO(15nm) TFTs with a beta ratio of 15. An inverter gain of 19.6 is obtained biased at a voltage of 18V.
Keywords: RF-sputtering, ZnO, thin film transistors, polarization effect
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:15:36Z (GMT). No. of bitstreams: 1
ntu-101-R99941090-1.pdf: 3241840 bytes, checksum: e555bab5066753f722f1342ce9cbebdd (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝................................................................i
中文摘要...........................................................ii
Abstract ...........................................................iii
內容............................................................... iv
圖目錄.............................................................vii
表目錄..............................................................x
第一章 簡介.........................................................1
1.1 氧化鋅.....................................................1
1.2 薄膜電晶體之發展...........................................3
1.2.1 氧化鋅薄膜電晶體......................................3
1.2.2 高載子遷移率電晶體....................................4
1.3 研究動機...................................................6
1.4 論文架構...................................................7
第二章 基本原理.....................................................8
2.1 薄膜電晶體..................................................8
2.1.1 薄膜電晶體結構.........................................8
2.1.2 薄膜電晶體工作原理.....................................9
2.1.3 薄膜電晶體之特徵參數..................................11
2.2 反向器.....................................................14
2.2.1 電壓轉換特性..........................................14
2.2.2 雜訊邊界..............................................16
2.3 異質結構與機制.............................................17
2.3.1 晶界散射..............................................17
2.3.2 二維電子氣與極化效應..................................18
2.3.3 屏蔽效應..............................................19
2.4 薄膜成長技術...............................................20
2.4.1濺鍍沉積..............................................20
2.4.2電子束蒸鍍............................................21
2.5 分析及量測儀器.............................................22
2.5.1 低掠角X射線繞射儀....................................22
2.5.2 表面輪廓儀............................................23
2.5.3 霍爾量測..............................................23
2.5.4 掃描式電子顯微鏡......................................23
2.5.5 原子力顯微鏡..........................................23
2.5.6 X射線光電子能譜儀.....................................24
第三章 實驗方法與步驟..............................................25
3.1 微影製程...................................................25
3.2 薄膜電晶體製作流程.........................................26
3.3 霍爾量測試片製作流程.......................................28
3.4 電性量測架構...............................................29
第四章 實驗結果與討論..............................................30
4.1 氧化鋅薄膜性質分析.........................................30
4.2 氧化鎂鋅/氧化鋅異質接面性質分析.............................36
4.3 MgXZn1-XO/ZnO異質接面電晶體................................37
4.3.1 氧化鎂鋅成分與氧化鋅膜厚對MgXZn1-XO/ZnO異質接面電晶體的
影響..................................................37
4.3.2 孤立通道層對MgXZn1-XO/ZnO異質接面電晶體的影響........50
4.4 反向器.....................................................58
第五章 結論與未來展望..............................................63
5.2 未來展望...................................................63
5.1 結論.......................................................64
參考文獻...........................................................65
dc.language.isozh-TW
dc.title以射頻磁控濺鍍法製作氧化鎂鋅/氧化鋅異質接面場效電晶體zh_TW
dc.titleMgZnO/ZnO Heterostructure Field-Effect Transistor Fabricated by RF-sputteringen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳志毅(Chih-I Wu),蔡豐羽(Feng-Yu Tsai),陳建彰(Jian-Zhang Chen)
dc.subject.keyword射頻磁控濺鍍法,氧化鋅,薄膜電晶體,極化效應,zh_TW
dc.subject.keywordRF-sputtering,ZnO,thin film transistors,polarization effect,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2012-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved