請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63640
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王安邦(An-Bang Wang) | |
dc.contributor.author | Chao-Chieh Chen | en |
dc.contributor.author | 陳昭傑 | zh_TW |
dc.date.accessioned | 2021-06-16T17:15:29Z | - |
dc.date.available | 2013-08-20 | |
dc.date.copyright | 2012-08-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-19 | |
dc.identifier.citation | 1. Parker, W.J., et al., Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. Journal of Applied Physics, 1961. 32(9): p. 1679-1684.
2. McLaughlin, E. and J.F.T. Pittman, Determination of the Thermal Conductivity of Toluene-A Proposed Data Standard-from 180 to 400k under Saturation Pressure by the Transient Hot-Wire Method I. The Theory of the Technique. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971. 270(1209): p. 557-578. 3. Alvarado, S., et al., A hot-wire method based thermal conductivity measurement apparatus for teaching purposes. European Journal of Physics, 2012. 33(4): p. 897. 4. Gustafsson, S.E., E. Karawacki, and M.N. Khan, Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids. Journal of Physics D: Applied Physics, 1979. 12(9): p. 1411. 5. Jury, S.H., et al., End effects on the flow of heat, mass or electrical energy through a cylindrical rod. Journal of the Franklin Institute, 1974. 298(3): p. 151-179. 6. Gustafsson, S.E., E. Karawacki, and M.A. Chohan, Thermal transport studies of electrically conducting materials using the transient hot-strip technique. Journal of Physics D: Applied Physics, 1986. 19(5): p. 727. 7. Maqsood, A., et al., Simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors using the transient plane source (TPS) technique. International Journal of Energy Research, 1994. 18(9): p. 777-782. 8. Log, T. and S.E. Gustafsson, Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire and Materials, 1995. 19(1): p. 43-49. 9. He, Y., Rapid thermal conductivity measurement with a hot disk sensor: Part 2. Characterization of thermal greases. Thermochimica Acta, 2005. 436(1–2): p. 130-134. 10. He, Y., Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations. Thermochimica Acta, 2005. 436(1‚Ai2): p. 122-129. 11. Bohac, V., Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer. Rev. Sci. Instrum., 2000. 71(6): p. 2452. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63640 | - |
dc.description.abstract | 一般常用之熱傳導係數量測機台,需花長時間等待系統溫度達到穩態,再由已知間距量測點所測得試片之溫度梯度,以傅立葉熱傳導方程求出材料熱傳導係數,因此量測材料熱傳導值所需耗費時間較長,一般約需數十分鐘至數小時。且此穩態量測法其待測材料熱傳導係數與適合量測之試片厚度有相對應關係,對低熱傳導材料而言,此方法適於較薄試片量測,在厚試片量測上因等待系統達到穩態時間過長,存在嚴重熱損耗問題;對高熱傳導材料來說,此方法僅適於較厚試片量測,在薄試片量測上因各溫度測量點間之溫度差異小,於熱傳導值的換算易有較大誤差。
本論文研究探討以暫態熱傳導之特性基礎,自製一兼具加熱與溫度感測功能之平面雙螺旋熱源量測元件,將元件緊密夾於待測試片中,量測此暫態平面熱源其溫度隨時間之響應以推得待測材料之熱傳導係數及熱擴散係數。此暫態平面熱源量測技術著重在加熱時熱源與待測試片其溫度隨時間之變化關係,不需等待系統達到熱穩態,量測時間遠低於傳統穩態量測技術。此外,吾人亦探討此暫態平面熱源量測技術於大氣及抽真空環境下之量測差異,發現在抽真空環境下可有效隔絕外界環境對流對待測試片之影響,大幅提升量測準確度。 本暫態平面熱源量測系統在5.75秒內量測出紅銅(JIS C1100)之熱傳導係數370.6 W/m•k,與標稱平均值差異<5%;在3.5秒內量測出氮化鋁(AIN)材料之熱傳導係數188.5 W/m•k,與中科院量測值誤差<0.78%;在5秒內量測出矽晶圓之熱傳導係數146.2 W/m•k,與標稱平均值差異<7.47%;在4.6秒內量測出黃銅(JIS C2680)之熱傳導係數123.9 W/m•k,與標稱平均值差異<4.6%;在80秒內量測出不鏽鋼(Stainless steel 304)之熱傳導係數20.69 W/m•k,與標稱平均值差異<3.45%;在180秒內量測出壓克力板之熱傳導係數0.202 W/m•k,與標稱平均值差異<3.35%。本論文研究以低成本成功建立一快速暫態熱傳導係數量測系統,於大熱傳導係數範圍(0.202 ~ 370.6 W/m•k)量測中整體誤差低於7.47%、量測時間短於180秒,在學術研究上對未知熱傳導值材料來說提供一準確且快速之量測利器。 | zh_TW |
dc.description.abstract | A thermal conductivity meter that we have used commonly requires a long time to allow system temperature to reach steady state. With the Fourier Heat Conduction Equation, we evaluate thermal conductivity by using the temperature gradient that we measured from the known measurement points of spacing. Therefore, it takes a longer period of time to measure the amount of the thermal conductivity which generally requires 10 minutes to couples of hours. By this, there is a correspondent relationship between the thermal conductivity of steady-state measurement method and the thickness of test specimens. For the lower thermal conductivity material, this solution is suitable for a thinner test specimen. It usually causes serious concerns of heat loss when a thicker test specimen spends too much time waiting for the system to reach the steady state. As for the higher thermal conductivity material, this method is better merely used on a thicker test specimen. In contrary, it would tend to have larger error in the value of thermal conductivity because the difference of temperature measurement points we gathered from a thinner specimen was small.
In this essay, we study the characteristic foundation of transient heat conduction based on a self-made raw model composed with flat double-spiral heat source measurement which qualify both heating and temperature sensing functions. We make the components tightly clipped in between the test specimens which we use for testing later. After that, we evaluate the thermal conductivity and thermal diffusivity of the test specimens by measuring the temperature of the transient plane heat source which is reactivating with the passing of time. This measuring techniques of Transient Plane Source is concentrated on the changes between the heat source when heating and its own temperature changing over time. It takes less period of time than traditional steady-state measurement techniques and we don't have to wait for a system to keep heat stable. In addition, I examine the measurement difference of the measuring techniques of Transient Plane Source in the atmospheric and vacuum environment. My finding in this research discovers that the vacuum environment can efficiently isolate from the impact to the test specimens which is potentially influenced by external environment convection. With this discovery, we can significantly increase the measurement accuracy. This Transient Plane Source Measurement System I have worked on has been helping me to obtain the following data. My research measured from the Brass JIS C1100 within 5.75 seconds appeared that the value of thermal conductivity was 370.6 W/m•k and the normal average difference was less than 5%. As for the Aluminum Nitride, AIN, it took me 3.5 seconds to gather the value of thermal conductivity at 188.5 W/m•k which was less 0.78% different from the statistics recorded at the Chung-shan Institute of Science and Technology in Taiwan. The value of thermal conductivity I collected when tested on Silicon Wafer in 5 seconds was 146.2 W/m•k and the normal average difference was less than 7.47%. Spent 4.6 seconds to work on the Brass JIS C2680, I obtained the value of thermal conductivity at 123.9 W/m•k which was less 4.6% different from the nominal average. As for the value of thermal conductivity measured from Stainless Steel within 80 seconds, it was 20.69 W/m•k and the normal average difference was less 3.45%. When tested on a acrylic sheet within 180 seconds, I obtained the values of thermal conductivity at 0.202 W/m•k which was less 3.35% different from the nominal average. In this thesis, we have successfully established a efficient measuring system of transient heat conduction coefficient by taking lower cost efficiency. In the measurement of large thermal conductivity range from 0.202 to 370.6 W/m•k), the overall error was lower under 7.47% and the time of measurement was within 180 seconds. To the unknown material of thermal conductivity, this device provides the academic research a efficient, precise and time-saving measurement application. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:15:29Z (GMT). No. of bitstreams: 1 ntu-101-R99543098-1.pdf: 3772443 bytes, checksum: 0299e8567da92f537cb9e07644d4460c (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 IV ABSTRACT V 目錄 VII 表目錄 XIII 符號說明 XIV 第一章 緒論 1 1.1前言 1 1.2研究動機 2 1.3文獻回顧 3 1.3.1雷射脈衝測定法 3 1.3.2暫態熱線法 4 1.3.3暫態熱帶法 5 1.3.4暫態平面熱源法 6 第二章 暫態平面熱源量測原理 9 2.1等向性材料中之熱傳導原理 9 2.2單一線圈熱傳導原理 10 2.3雙螺旋線圈熱傳導原理 12 2.4熱穿透深度定義 16 第三章 實驗設備及方法 18 3.1實驗設備 18 3.1.1溫度感測元件設計和尺寸規格 19 3.1.2直流電源供應器 21 3.1.3擷取訊號卡規格 22 3.1.4真空裝置 22 3.1.5熱電偶溫度截取模組 23 3.1.6量測材料試片 24 3.2實驗方法 25 3.3惠式通電橋跨壓與電阻關係 26 3.4溫度感測元件電阻溫度係數探討 27 3.4.1熱電偶溫度校正 28 3.4.2溫度感測元件電阻溫度係數 30 3.5數值線性迭代∆T(τ)與D(τ) 32 3.5.1溫度感測件平均溫度∆T(τ)與D(τ)之關係 32 3.5.2數值線性迭代過程 34 3.6溫度感測元件適當量測時間範圍 34 3.7時間延遲(tc)影響分析因素 37 第四章 結果與討論 38 4.1不鏽鋼(Stainless steel 304)在不同施力下量測熱傳導係數值分析 38 4.2抽真空與未抽真空環境下量測比較 43 4.2.1矽晶圓熱傳導係數值量測分析 44 4.2.2壓克力板熱傳導係數值量測分析 48 4.2紅銅(JIS C1100)、氮化鋁(AIN)、黃銅(JIS C2680)等熱傳導係數值材料量測分析 52 4.3使用較小半徑之溫度感測件量測 61 4.4不同真空度下量測矽晶圓熱性質係數值 64 第五章 結論與未來展望 66 5.1結論 66 5.2未來展望 67 參考文獻 68 附錄I 程式介面圖 70 附錄II 數值迭代分析程式 71 作者資料 73 圖目錄 圖1. 1雷射脈衝設定法量測設備示意圖[1] 4 圖1. 2 熱線法量測原理示意圖[2] 5 圖1. 3 熱帶法量測技術示意圖[4] 6 圖1. 4熱帶量測法溫度感測元件輸入功率隨時間之變化圖[4] 6 圖1. 5溫度感測元件設計成hot disk之模型[7] 7 圖1. 6溫度感測元件放置於兩待測材料間示意圖[8] 8 圖2. 1熱穿透深度示意圖(∆P<h) 17 圖3. 1抽真空環境下之實驗設備架設圖 18 圖3. 2大氣環境下之實驗設備架設圖 18 圖3. 3加熱感測片側視及上視圖 20 圖3. 4溫度感測元件實際示意圖 21 圖3. 5可程式控制直流電源供應器(PSM-2010) 21 圖3. 6 PCI-6221訊號擷取卡 22 圖3. 7真空裝置 23 圖3. 8 (左) ADAM-4018 連接熱電偶 (右)ADAM-4520 連接RS232 23 圖3. 9氮化鋁(AIN)、矽晶圓(Silicon Wafer) 24 圖3. 10紅銅(JIS C1100)、黃銅(JIS C2680)、不鏽鋼(304)、壓克力板(PMMA) 25 圖3. 11研究分析系統流程圖 26 圖3. 12暫態平面熱源量測示意圖(Z軸為一無窮域) 26 圖3. 13惠氏通電橋,擷取跨壓U(t)並換算出加熱片電阻R(t)隨時間之變化 27 圖3. 14熱電偶校正示意圖 28 圖3. 15熱電偶Ch1、Ch2之溫度校正圖 29 圖3. 16溫度和電阻線性關係式 31 圖3. 17上下待測試片外部加上假想熱源與假想試片示意圖 33 圖3. 18 Ds (τ)無因次參數函數圖(半徑22mm、圈數10以及試片厚度5mm) 34 圖3. 19溫度響應、熱擴散係數之靈敏係數βa以及熱傳導係數之靈敏係數βλ隨無因次時間參數t/Θ之變化圖[11] 36 圖3. 20兩靈敏係數相加後之關係式[11] 36 圖4. 1不同施力下不鏽鋼(Stainless steel 304)於抽真空環境量測平均溫度隨時間之變化 39 圖4. 2不同施力下溫度感測元件於不鏽鋼(Stainless steel 304)之間平均溫度隨時間之變化率 40 圖4. 3溫度感測元件於不鏽鋼(Stainless steel 304),1.5 s至80 s之抽真空環境下量測得平均溫度隨時間之變化 40 圖4. 4不鏽鋼(Stainless steel 304)於真空環境下數值迭代分析(F=0 N) 41 圖4. 5不鏽鋼(Stainless steel 304)於真空環境下數值迭代分析(F=19.6 N) 41 圖4. 6不鏽鋼(Stainless steel 304)於真空環境下數值迭代分析(F=39.2 N) 42 圖4. 7不鏽鋼(Stainless steel 304)於真空環境下數值迭代分析(F=57.8 N) 42 圖4. 8不同施力大小下量測不鏽鋼(Stainless steel 304)熱傳導係數值 43 圖4. 9矽晶圓於抽真空和未抽真空環境下,其量測平均溫度隨時間之變化 44 圖4. 10溫度感測元件於矽晶圓間平均溫度隨時間之變化率 45 圖4. 11溫度感測元件於1.25s至5s之抽真空環境與未抽真空環境下量測得平均溫度隨時間之變化 45 圖4. 12矽晶圓於抽真空環境下數值迭代分析 46 圖4. 13矽晶圓於非真空環境下數值迭代分析 46 圖4. 14矽晶圓平均溫度與Ds (τ)之線性回歸圖 47 圖4. 15壓克力板平均溫度變化隨時間之變化 48 圖4. 16壓克力板平均溫度變化隨時間變化之局部放大圖 49 圖4. 17溫度感測元件於壓克力板間平均溫度隨時間之變化率 49 圖4. 18壓克力板於真空環境下數值迭代分析 50 圖4. 19壓克力板於非真空環境下數值迭代分析 51 圖4. 20壓克力板平均溫度變化線性回歸 51 圖4. 21紅銅於抽真空環境量測平均溫度隨時間之變化 53 圖4. 22氮化鋁於抽真空環境量測平均溫度隨時間之變化 53 圖4. 23黃銅於抽真空環境量測平均溫度隨時間之變化 54 圖4. 24溫度感測元件於紅銅間平均溫度隨時間之變化率 55 圖4. 25溫度感測元件於氮化鋁間平均溫度隨時間之變化率 55 圖4. 26溫度感測元件於黃銅間平均溫度隨時間之變化率 56 圖4. 27溫度感測元件於紅銅0.75 s至5.75 s之抽真空環境下量測得平均溫度隨時間之變化 57 圖4. 28溫度感測元件於氮化鋁1 s至3.5 s之抽真空環境下量測得平均溫度隨時間之變化 57 圖4. 29溫度感測元件於黃銅2.75 s至12.5 s之抽真空環境下量測得平均溫度隨時間之變化 58 圖4. 30紅銅(Brass C1100)於真空環境下數值迭代分析 58 圖4. 31氮化鋁(AIN)於真空環境下數值迭代分析 59 圖4. 32黃銅(JIS C2680)於真空環境下數值迭代分析 59 圖4. 33紅銅(JIS C1100)平均溫度與Ds (τ)之線性回歸圖 60 圖4. 34氮化鋁(AIN)平均溫度與Ds (τ)之線性回歸圖 60 圖4. 35黃銅(JIS C2680)平均溫度與Ds (τ)之線性回歸圖 61 圖4. 36不同半徑的溫度感測元件,其熱傳導係數值與量測時間關係圖 62 圖4. 37不同半徑的溫度感測元件,其熱傳導係數值與量測誤差關係圖 63 圖4. 38不同真空度下進行矽晶圓熱性質量測分析 65 表目錄 表3. 1加熱感測片設計尺寸規格 19 表3. 2量測試片尺寸規格 24 表3. 3熱電偶溫度校正表 30 表3. 4溫阻係數重複三次實驗重複性結果 31 表4. 1不鏽鋼(Stainless steel 304)於不同施力下所量測的熱傳導係數值與熱傳導係數標稱值平均誤差比較 43 表4. 2矽晶圓實驗值與標稱值誤差比較 47 表4. 3壓克力板實驗值與標準值誤差比較 52 表4. 4紅銅(JIS C1100)、氮化鋁(AIN)、黃銅(JIS C2680)之實驗值與標稱值誤差比較 61 表4. 5使用半徑d=14.235mm之半徑量測各材料試片之結果與標稱值誤差比較 63 表4. 6使用半徑d=22mm之半徑量測各材料試片之結果與標稱值誤差比較 64 | |
dc.language.iso | zh-TW | |
dc.title | 以暫態平面熱源快速量測材料熱性質之探討 | zh_TW |
dc.title | On the Fast Measurement of Material Thermal Properties by Transient Hot-Disk Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施文彬(Wen-Pin Shih),翁宗賢(Tzong-Shyan Wung) | |
dc.subject.keyword | 暫態平面熱源,高熱傳導係數量測,低熱傳導係數量測,熱擴散係數量測, | zh_TW |
dc.subject.keyword | Transient plane source,High thermal conductivity measurement,Low thermal conductivity measurement,The measurement of thermal diffusivity, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。