請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63638
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張瑞峰 | |
dc.contributor.author | Yi-Ting Lin | en |
dc.contributor.author | 林怡婷 | zh_TW |
dc.date.accessioned | 2021-06-16T17:15:27Z | - |
dc.date.available | 2012-08-22 | |
dc.date.copyright | 2012-08-22 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-18 | |
dc.identifier.citation | [1] D. M. Regner, et al., 'Breast lesions: Evaluation with US strain imaging - Clinical experience of multiple observers,' Radiology, vol. 238, pp. 425-437, Feb 2006.
[2] F. J. Fleury Ede F, Piato S, Roveda D Jr., 'New elastographic classification of breast lesions during and after compression.,' Diagnostic and Interventional Radiology, vol. 15, pp. 96-103, 2009 Jun. [3] C. C. Bhatia KS, Tong CS, Yuen EH, Ahuja AT., 'Shear Wave Elasticity Imaging of Cervical Lymph Nodes,' Ultrasound in Medicine & Biology, vol. 38, pp. 195-201, 2012. [4] A. Itoh, et al., 'Breast disease: Clinical application of US elastography for diagnosis,' Radiology, vol. 239, pp. 341-350, May 2006. [5] W. K. Moon, et al., 'Analysis of elastographic and B-mode features at sonoelastography for breast tumor classification,' Ultrasound in medicine & biology, vol. 35, pp. 1794-1802, 2009. [6] P. W. Andrew Evans, Kim Thomson, Denis McLean, Katrin Brauer, Colin Purdie, Lee Jordan, Lee Baker, Alastair Thompson, 'Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,' Breast Cancer Research, vol. R 104, 2010. [7] T. A. Athanasiou A, Tanter M, Sigal-Zafrani B, Bercoff J, Deffieux T, Gennisson JL, Fink M, Neuenschwander S., 'Breast Lesions: Quantitative Elastography with Supersonic Shear Imaging—Preliminary Results,' Radiology, vol. 256, pp. 297-303, 2010. [8] M. Wendie A. Berg, PhD, David O. Cosgrove, MA, Caroline J Dore, BSc, Fritz K. W. Schafer, MD, William E. Svensson, MD, Regina J. Hooley, MD, Ralf Ohlinger, MD, Ellen B. Mendelson, MD, Catherine Balu-Maestro, MD, Martina Locatelli, MD, Christophe Tourasse, MD, Barbara C. Cavanaugh, MD, Valerie Juhan, MD, A. Thomas Stavros, MD1, Anne Tardivon, MD, Joel Gay, BS, Jean-Pierre Henry, MS, Claude Cohen-Bacrie, PhD, 'Shear-wave Elastography Improves the Specifi city of Breast US: The BE1 Multinational Study of 939 Masses,' Radiology, vol. 262, pp. 435-449, February 2012. [9] A. Athanasiou, et al., 'Breast Lesions: Quantitative Elastography with Supersonic Shear Imaging—Preliminary Results1,' Radiology, vol. 256, pp. 297-303, 2010. [10] J. S. Suri, Advances in diagnostic and therapeutic ultrasound imaging. Boston ; London: Artech House, 2008. [11] R. Deriche, 'Fast Algorithms for Low-Level Vision,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 78-87, Jan 1990. [12] R. Malladi, et al., 'Shape Modeling with Front Propagation - a Level Set Approach,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 158-175, Feb 1995. [13] S. Osher and J. A. Sethian, 'Fronts Propagating with Curvature-Dependent Speed - Algorithms Based on Hamilton-Jacobi Formulations,' Journal of Computational Physics, vol. 79, pp. 12-49, Nov 1988. [14] R. C. Gonzalez, et al., Digital image processing, third ed. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2009. [15] J. A. Sethian, 'Numerical Algorithms for Propagating Interfaces - Hamilton-Jacobi Equations and Conservation-Laws,' Journal of Differential Geometry, vol. 31, pp. 131-161, Jan 1990. [16] H. J. A. M. Heijmans, 'Theoretical Aspects of Gray-Level Morphology,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 568-582, Jun 1991. [17] J. Serra, 'Biomedical Image Analysis by Mathematical Morphology,' Pathologie Biologie, vol. 27, pp. 205-207, 1979. [18] S. R. Sternberg, 'Grayscale Morphology,' Computer Vision Graphics and Image Processing, vol. 35, pp. 333-355, Sep 1986. [19] J. Saniie and M. A. Mohamed, 'Ultrasonic Flaw Detection Based on Mathematical Morphology,' IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 41, pp. 150-160, Jan 1994. [20] W. K. Moon, 'Computer-aided diagnosis based on speckle patterns in ultrasound images,' Ultrasound in Medicine and Biology, vol. 1-11, Feb 2012. [21] W. C. Shen, et al., 'Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS),' Ultrasound in Medicine and Biology, vol. 33, pp. 1688-1698, Nov 2007. [22] W. C. Shen, et al., 'Breast ultrasound computer-aided diagnosis using BI-RADS features,' Academic Radiology, vol. 14, pp. 928-939, Aug 2007. [23] A. K. Jain, Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [24] B. S. Chen Y, Flynn PJ., 'Phase insensitive homomorphic image processing for speckle reduction.,' Ultrasonic Imaging, vol. 18, pp. 122-39, 1996. [25] W. W. Chang RF, Moon WK, Chen DR., 'Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis.,' Ultrasound in Medicine and Biology, vol. 29, pp. 679-86, 2003. [26] A. F. Wendy Lani Smith, 'Optimum scan spacing for three-dimensional ultrasound by speckle statistics.,' Ultrasound in Medicine & Biology, vol. 26, pp. 551-562, May 2000. [27] R. M. Haralick, et al., 'Textural Features for Image Classification,' Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, pp. 610-621, 1973. [28] R. M. Haralick, 'Statistical and Structural Approaches to Texture,' Proceedings of the Ieee, vol. 67, pp. 786-804, 1979. [29] D. W. Hosmer and S. Lemeshow, Applied logistic regression, 2nd ed. New York: Wiley, 2000. [30] E. Alpaydin, Introduction to machine learning. Cambridge, Mass.: MIT Press, 2004. [31] A. P. Field, Discovering statistics using SPSS, 3rd ed. Los Angeles: SAGE Publications, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63638 | - |
dc.description.abstract | 乳癌一直是全球女性的十大死因之一,而腫瘤的硬度也已經被證實為分辨良性與惡性腫瘤的主要特徵。過去幾年來,醫師普遍使用乳房彈性超音波來評估病患的腫瘤彈性硬度。這項技術需人為壓迫乳房腫瘤來求得腫瘤彈性硬度。不同於傳統的乳房彈性超音波,本次實驗使用的橫波乳房彈性超音波只需利用聲波輻射便可取得腫瘤彈性硬度。在傳統的乳房彈性超音波上,腫瘤診斷是基於腫瘤內部的彈性資訊,而在橫波乳房彈性超音波上,重要的診斷資訊卻是來自於腫瘤外部而非內部的彈性硬度。此篇論文的目的為針對影像做自動切割輪廓並擷取出特徵來診斷腫瘤良惡性。首先,我們會藉由Level set切割方法自動地切割出腫瘤的輪廓,比起利用醫生的手動圈選腫瘤更能維持切割結果的一致性。接著,藉由腫瘤輪廓與影像資訊來擷取出B-mode與彈性特徵。最後,除了利用B-mode與彈性特徵分別來診斷腫瘤良惡性,也結合兩者來加以診斷腫瘤。本實驗中由112個經過病理驗證的病例進行測試,其中包含個58良性與54個惡性的病例。經由實驗結果,當使用B-mode特徵時,腫瘤分辨的準確度為84.82%;當使用彈性特徵時,腫瘤分辨的準確度為91.07%;當結合B-mode與彈性特徵時,腫瘤分辨的準確度為94.64%。根據實驗結果的統計分析,將B-mode與彈性特徵結合時,腫瘤分辨的準確度會有顯著的提升。 | zh_TW |
dc.description.abstract | The breast cancer is always one of the ten leading death causes for women around the world. The strain of the tumor has been confirmed to be the main feature of distinguishing benign and malignant tumors. In the past years, the physician has used the sonoelastography with manual compression to obtain the tumor strain. Different from the conventional sonoelastography, this study adopts the new shear wave elastography which uses the acoustic radiation to generate the tumor strain. In the conventional sonoelastography, the tumor diagnosis is based on the elasticity information inside the tumor. However, in the new shear wave elastography, the important diagnostic information is outside the tumor rather than inside the tumor. The purposes of this paper are automatically segmenting the tumor contour for the image and extracting the features to diagnose benign and malignant tumors. First, we use the level set segmentation method to automatically cut out the tumor contour. Comparing with the manually circled tumor, our scheme can maintain the consistency of the segmentation results. Then, the tumor contour and image information are applied to extract the B-mode and elastographic features. Finally, in addition to use either B-mode or elastographic features to diagnose benign and malignant tumors, a combination of both feature set is also utilized for diagnosis. In this study, we use 112 biopsy-proved breast tumors composed of 58 benign and 54 malignant cases. The experimental results illustrate that the accuracy in distinguishing tumors using B-mode features is 84.82%, whereas 91.07% using elastography features, and 94.64% combining B-mode and elastographic features. Based on statistical analyses of experimental results, the accuracy of classifying tumors using the combined feature set is significantly improved. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:15:27Z (GMT). No. of bitstreams: 1 ntu-101-R99944040-1.pdf: 1554757 bytes, checksum: a4d66efdf5381b997c8775cfb4be09bb (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員審核書 i
ACKNOWLEDGEMENTS ii 摘要 iii Abstract v LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 Chapter 2 Material 4 2.1 Shear wave image 4 2.2 Lesions 6 Chapter 3 The Proposed Method 7 3.1 Elasticity Extraction 8 3.2 Segmentation 10 3.2.1 The Contrast-enhanced Gradient Image 11 3.2.1.1 Sigmoid image filter 12 3.2.1.2 Gradient magnitude filter 14 3.2.2 Level Set Method 15 3.2.3 Morphology Closing Operation for Hole Filling 16 3.3 Tumor Analysis 17 3.3.1 Computerized BI-RADS B-mode US Features 17 3.3.1.1 Shape features 17 3.3.1.2 Orientation features 18 3.3.1.3 Margin features 19 3.3.1.4 Lesion boundary features 21 3.3.1.5 Echo pattern features 22 3.3.1.6 Posterior acoustic features 24 3.3.1.7 Speckle features 25 3.3.1.8 GLCM texture features 27 3.3.2 Computerized Elastogrphic Features 30 3.3.2.1 Average tissue elasticity 30 3.3.2.2 Sectional stiffness ratio 33 3.3.2.3 Normalized minimum distance of grouped stiffer pixels 34 3.4 Statistical Analysis 36 Chapter 4 Experiment Results 37 4.1 B-mode and Elastographic Features analysis 37 4.2 Tumor Classification 42 4.3 Discussion 53 Chapter 5 Conclusion and Future Works 55 References 56 | |
dc.language.iso | en | |
dc.title | 橫波乳房彈性攝影之腫瘤診斷 | zh_TW |
dc.title | Tumor Diagnosis of Shear Wave Breast Elastography | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃俊升,張允中 | |
dc.subject.keyword | 彈性,橫波,乳房,腫瘤,腫瘤切割, | zh_TW |
dc.subject.keyword | elastography,shear wave,breast,tumor,tumor segmentation, | en |
dc.relation.page | 58 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。