Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63604
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡坤諭(Kuen-Yu Tsai)
dc.contributor.authorYu-Jhih Zengen
dc.contributor.author曾宇鋕zh_TW
dc.date.accessioned2021-06-16T17:14:41Z-
dc.date.available2022-08-20
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-19
dc.identifier.citation[1] G. E. Moore: Electronics 38 (1965) 114.
[2] Voltage Regulator Module (VRM) and Enterprise Voltage Regulator Down (EVRD) 11.1 Design Guide: Intel, Sep. 2009.
[3] K. Yao; Y. Ren, F.C. Lee, “Critical bandwidth for the load transient response of voltage regulator modules,” IEEE Trans. power electron., vol.19, pp. 1454-1461 , Nov. 2004.
[4] G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems, 6th Ed., Prentice-Hall, 2010.
[5] S. Kapat, P.S. Shenoy, P.T. Krein, “Near-Null Response to Large-Signal Transients in an Augmented Buck Converter: A Geometric Approach,” IEEE Trans. power electron., vol.27, pp. 3319-3329 , Jul 2012.
[6] N. Kondrath, M. K. Kazimierczuk, “Comparison of Wide- and High-Frequency Duty-Ratio-to-Inductor-Current Transfer Functions of DC–DC PWM Buck Converter in CCM,” IEEE Trans. on Industrial Electronics, vol. 59, pp. 641- 643, Oct 2012.
[7] C. Olalla, R. Leyva, A. El Aroudi, I. Queinnec, “Robust LQR Control for PWM Converters: An LMI Approach,” IEEE Trans. on Industrial Electronics, vol. 56, pp. 2548- 2558, Jul. 2009.
[8] A. De Nardo, N. Femia, G. Petrone, G. Spagnuolo, “Optimal Buck Converter Output Filter Design for Point-of-Load Applications,” IEEE Trans. on Industrial Electronics, vol. 57, pp. 1330- 1341, Apr. 2010.
[9] M. Jinno, P. Y. Chen, Y. C. Lai, K. Harada, “Investigation on the Ripple Voltage and the Stability of SR Buck Converters With High Output Current and Low Output Voltage,” IEEE Trans. on Industrial Electronics, vol. 57, pp. 1008- 1016, Mar. 2010.
[10] S. Lim, J. Fan, A. Q. Huang, ”Transient-Voltage-Clamp Circuit Design Based on Constant Load Line Impedance for Voltage Regulator Module,” IEEE Trans. on Industrial Electronics, vol. 57, pp. 4085- 4094, Dec. 2010.
[11] K. Yao, K. Lee, F.C. Lee, “Optimal design of the active droop control method for the transient response,” in Proc. IEEE Applied Power Electron. Conf., 2003, pp. 718-723.
[12] K. Yao, Y. Ren, J. Sun, K. Lee, M. Xu, J. Zhou, F.C. Lee, “Adaptive voltage position design for voltage regulators,” in Proc. IEEE Applied Power Electron. Conf., 2004, pp. 272-278.
[13] S. Concepcion Huerta, P. Alou, J. A. Oliver, O. Garcia, J. A. Cobos, A. M. Abou-Alfotouh, ”Nonlinear Control for DC-DC Converters Based on Hysteresis of the COUT Current With a Frequency Loop to Operate at Constant Frequency,” IEEE Trans. on Industrial Electronics, vol. 58, pp. 1036- 1043, Mar. 2011.
[14] E. Meyer, Z. Zhang; Y. F. Liu, “Controlled Auxiliary Circuit to Improve the Unloading Transient Response of Buck Converters,” IEEE Trans. power electron., vol.25, pp. 806-819 , Apr. 2010.
[15] R. P. Singh, A. M. Khambadkone, ”A Buck-Derived Topology With Improved Step-Down Transient Performance,” IEEE Trans. power electron., vol.23, pp. 2855-2866 , Nov. 2008.
[16] J. Quintero, A. Barrado, M. Sanz, C. Fernandez, P. Zumel, “Impact of linear-nonlinear control in multiphase VRM design,” IEEE Trans. power electron., vol.26, pp. 1826-1831 , Jul. 2011.
[17] W. J. Lambert, R. Ayyanar, S. Chickamenahalli, “Fast Load Transient Regulation of Low-Voltage Converters with the Low-Voltage Transient Processor,” IEEE Trans. power electron., vol.24, pp. 1839-1854 , Jul. 2009.
[18] M. Lee, D. Chen; K. Huang, C. W. Liu; B. Tai, “Modeling and design for a novel adaptive voltage positioning (AVP) scheme for multiphase VRMs,” IEEE Trans. power electron., vol.23, pp. 1733-1742 , Jul 2008.
[19] M. M. Peretz, S. Ben-Yaakov, “Time Domain Identification of PWM Converters for Digital Controllers Design,” in Proc. IEEE Power Electron. Spec. Conf., 2007, pp. 809-813.
[20] G. E. Pitel, P. T. Krein, “Real-time system identification for load monitoring and transient handling of Dc-Dc supplies,” in Proc. IEEE Power Electron. Spec. Conf., 2008, pp. 3807-3813.
[21] R. Ghosh, G. Narayanan, ”Generalized feedforward control of single-phase PWM rectifiers using disturbance observers,” IEEE Trans. on Industrial Electronics, vol. 54, pp. 984- 993, Apr. 2007.
[22] A.V. Peterchev, S.R. Sanders, “Load-line regulation with estimated load-current feedforward: Application to microprocessor voltage regulators,” IEEE Trans. power electron., vol.21, pp. 1704-1711 , Nov 2006.
[23] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control, 2nd Ed., Wiley, 2007.
[24] G. Balas, R. Chiang, A. Packard, M. Safonov, Robust Control Toolbox, Natick, MA: The Math Works, Inc., 2012.
[25] E. B. Muhando, T. Senjyu, A. Uehara, T. Funabashi, “Gain-Scheduled Hinf Control for WECS via LMI Techniques and Parametrically Dependent Feedback Part II: Controller Design and Implementation,” IEEE Trans. on Industrial Electronics, vol. 58, pp. 57- 65, Jan. 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63604-
dc.description.abstract傳統的電壓調整模組設計在負載暫態期間遭遇到責任週期飽和的問題。這個問題可以被增加輸出電容所減緩,但將會導致使用一個較大的面積;減少電感則會引起功率消耗。此外,在頻率上的線性控制器設計會變得複雜,原因是主動下垂控制方法會使電壓與電流迴路相互衝突。這個問題可以被負載電流前饋偵測方法配合考慮寄生元件的精準小訊號模型來解決。然而,它是困難在於使用數學推導的方式來建立小訊號模型。在這個論文,電壓調整模組使用了系統識別的技術、模型匹配方式之線性控制器的設計、線性矩陣不等式的最佳化和前饋強健控制方法,來避免責任週期飽和問題與簡化雙迴路控制結構。使用了我們所提出的方法巳被證實在電壓調整模組設計上可以符合電壓調整(版本11.1)大部份要求。zh_TW
dc.description.abstractTraditional design of voltage regulator modules (VRMs) has encountered duty-ratio saturation during load transient. This problem can be alleviated by increasing the output capacitances, which will lead to a larger board area, or by decreasing the inductances, which can cause power loss. Furthermore, linear controller design in the frequency domain becomes complicated because the voltage and current loops of the active droop control method may conflict with each other. This problem can be solved by the load-current feedforward estimation approach with an accurate small-signal model considering parasitic elements. However, it is difficult to develop accurate small-signal models using mathematical derivation. In this paper, VRM modeling using system identification techniques and linear controller design using model matching, linear matrix inequality optimization, and feedforward Hinf control techniques are proposed to prevent the duty-ratio saturation and simplify the multi-loop control structure. It has been demonstrated that the VRM design using the proposed methodology can satisfy the most of VR11.1 requirements.en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:14:41Z (GMT). No. of bitstreams: 1
ntu-101-J95921028-1.pdf: 1014599 bytes, checksum: d916e2cb0c54b3e5acac228ef4c548f1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAbstract I
摘要 II
Statement of Contributions III
誌謝 IV
Table of Contents V
List of Figures VII
List of Tables IX
Chapter 1 Introduction 1
Chapter 2 Design flow for proposed methods 7
Chapter 3 Specifications for Time and Frequency Domain 8
3.1 VR11.1 Specifications 8
3.2 Classical Control System Specifications 11
Chapter 4 Modeling and System Identification 16
4.1 Modeling the Buck Converter 16
4.2 System Identification Algorithm 18
Chapter 5 Design controller for buck converters 25
5.1 Feedback and Feedforward Filter Design 25
5.2 Design by Model-matching and LMI optimization 27
5.3 Time and Frequency Response 30
Chapter 6 Electronic Simulation 33
Chapter 7 Conclusion 35
Reference 36
BIOGRAPHIES 40
dc.language.isoen
dc.subject電壓調整下垂zh_TW
dc.subject強健控制zh_TW
dc.subject線性矩陣不等式最佳化zh_TW
dc.subject系統識別zh_TW
dc.subject電壓調整模組zh_TW
dc.subjectsystem identificationen
dc.subjectrobust control.en
dc.subjectLMI optimizationen
dc.subjectVRDen
dc.subjectVRMen
dc.title不會造成責任週期飽和且符合暫態響應要求的電壓調整模組之新式最佳控制器設計方法zh_TW
dc.titleA New Optimal Controller Design Method for Meeting Transient Response Requirements of Voltage Regulator Modules without Duty Ratio Saturationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏家鈺(Jia-Yush Yen),王大中(Ta-Chung Wang)
dc.subject.keyword電壓調整模組,電壓調整下垂,系統識別,線性矩陣不等式最佳化,強健控制,zh_TW
dc.subject.keywordVRM,VRD,system identification,LMI optimization,robust control.,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2012-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
990.82 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved