請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63577完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王富正(Fu-Cheng Wang) | |
| dc.contributor.author | Po-Chen Kuo | en |
| dc.contributor.author | 郭柏辰 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:14:15Z | - |
| dc.date.available | 2014-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-18 | |
| dc.identifier.citation | [1] Clint Alex Cottrell, Scott E. Grasman, Mathew Thomas, Kevin Braun Martin, John W. Sheffield,”Strategies for stationary and portable fuel cell markets” International Journal of Hydrogen Energy, 36: pp. 7969-7975, 2011
[2] 工程期刊2011年2月-氫能燃料電池之電信系統應用研究 專題報導P.61~64 [3] “State of the States: Fuel Cells in America”, Report form Fuel Cells 2000, www.fuelcells.org, April(2010) [4] “The Business Case for Fuel Cells: why Top companies are Purchasing Fuel Cells Today”, Report form Fuel Cell 2000, www.fuelcells.org, September(2010) [5] 工程期刊2011年2月-台灣綠能源產業發展策略 專題報導P.9~23 [6] 經濟部能源局2010年12月能源報導,” 台灣燃料電池導向商業化作法—燃料電池示範運轉推動現況” [7] M-Field UPS System, July 06, 2012: http://farm4.static.flickr.com/3622/3594270127_912d3ce0ac.jpg [8] Bunchi, F.N. and S. Srinivasan, “Operation Proton Exchange Membrane Fuel Cells without External Humidification of the Reactant Gases,” J. Electronchem. Soc., 144, pp. 2767-2772, Aug. 1997. [9] Amirinejad, M., S. Rowshanzamir, and M.H. Eikani, “Effects of Operating Parameters on Performance of a Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, 161: pp. 872-875 , 2006. [10] Bernardi, D.M. and M.W. Verbrugge, “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,” AiChE Journal, Vol. 137, No. 8, pp. 1151-1163, 1991. [11] Ceraolo, M., C. Miulli, and A. Pozio, “Modelling Static and Dynamic Behaviour of Proton Exchange Membrane Fuel Cells on the Basis of Electro-Chemical Description,” Journal of Power Sources, 113(1): pp. 131-144, 2003. [12] Methekar, R. N., V. Prasad, et al., “Dynamic Analysis and Linear Control Strategies for Proton Exchange Membrane Fuel Cell Using a Distributed Parameter Model,” Journal of Power Sources, 165(1): pp. 152-170, 2007. [13] Wang, F.C., Y.P. Yang, et al., “System Identification and Robust Control of a Portable Proton Exchange Membrane Fuel-Cell System,” Journal of Power Sources, 164(2): pp. 704-712, 2007. [14] Pukrushpan, J.T., H. Peng, and A.G. Stefanopoulou, “Simulation and Analysis of Transient Fuel Cell System Performance Based on a Dynamic Reactant Flow Model,” 2002 ASME International Mechanical Engineering Congress & Exposition, 17-22, November 2002. [15] Rodatz, P., G. Paganelli, and L. Guzzella, “Optimizing Air Supply Control of a PEM Fuel Cell System,” American Control Conference, Vol. 3, pp. 2043-2048, 4-6 June 2003. [16] Sedghisigarchi, K. and A. Feliachi, “H-Infinity Controller for Solid Oxide Fuel Cells,” System Theory, 2003. Proceedings of the 35th Southeastern Symposium on, pp. 464-467, 16-18 March 2003. [17] Wang, F.C., et al., “Proton Exchange Membrane Fuel Cell System Identification and Control - Part II: H-infinity Based Robust Control,” in Proceedings of 4th International ASME Conference on Fuel Cell Science, Engineering and Technology, 2006. [18] Yang, Y.P., F.C. Wang, et al., “Low Power Proton Exchange Membrane Fuel Cell System Identification and Adaptive Control,” Journal of Power Sources, 164(2): 761-771, 2007. [19] Vega-Leal, A.P., et al., “Design of control systems for portable PEM fuel cells,” Journal of Power Sources, 169(1): p. 194-197, 2007. [20] Wang, F.C., et al., “Multivariable robust control of a proton exchange membrane fuel cell system,” Journal of Power Sources, 177(2): p. 393-403, 2008. [21] Wang, F.C. and H.T. Chen, “Design and Implementation of Fixed-Order Robust Controllers for a Proton Exchange Membrane Fuel Cell System,” International Journal of Hydrogen Energy, Vol. 34, No.6, pp. 2705–2717, March 2009. [22] Thounthong P, Rael S and Davat B, “Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle”, Journal of Power Sources, 158(1): pp. 806-814, 2006. [23] Lee HS, Jeong KS and Oh BS, “An experimental study of controlling strategies and drive forces for hydrogen fuel cell hybrid vehicles”, International Journal of Hydrogen Energy, 28(2): pp. 215-222, 2003. [24] Wai RJ, Liu LW and Duan RY, “High-Efficiency Voltage-Clamped DC-DC Converter With Reduced Reverse-Recovery Current and Switch-Voltage Stress”, Industrial Electronics, IEEE Transactions, 53(1): pp. 272-280, 2006. [25] Zenith F and Skogestad S, “Control of fuel cell power output”, Journal of Process Control, 17(4): pp. 333-347, 2007. [26] knowledgepublications.com/doe/doe_fuel_cell_handbook_hydrogen_power_generation.htm [27] http://zh.wikipedia.org/wiki/%E4%B8%8D%E6%96%B7%E9%9B%BB%E7%B3%BB%E7%B5%B1 [28] 黃鎮江編著,燃料電池,修訂二版,全華圖書,台北市,2007。 [29] 溫武義編譯,燃料電池技術,全華圖書,台北市,2004。 [30] Brian C., Introduction to fuel cells and hydrogen technology, IEEE Proc, 205-16, 2002. [31] Kirubakaran, A., et al., “A review on fuel cell technologies and power electronic interface,” Renewable and Sustainable Energy Reviews, 2009. [32] Larmine, J. and A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, 2003. [33] http://www.bloggang.com/viewdiary.php?id=wing41&month=07-2007&date=12& group=1&gblog=2 [34] http://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1640 [35] Global Ticona Photo Database, July 14, 2009: www.ticona-photos.com [36] Tang, H.L., M. Pan, F. Wang, “A Mechanical Durability Comparison of Various Perfluocarbon Proton Exchange Membranes,” Journal of Applied Polymer Science, Vol. 109, 2671–2678, 2008. [37] www.cespn.net/bbs/attachment.php?aid=1392 [38] docs.thinkfree.com/tools/doc_location.php?ext=pdf&dsn=847227 [39] 張寬裕編著,燃料電池原理、量測與建模,鼎茂圖書,台北市,2007。 [40] Mehta, V. and J.S. Cooper, “Review and Analysis of PEM Fuel Cell Design and Manufacturing,” J. Power Sources, 114(1), pp. 32–53, 2003. [41] 台灣立凱電能科技股份有限公司:http://www.aleees.com/ [42] M. Thackeray,”Lithium-ion batteries: An unexpectrd conductor,” Natural materials, vol. 1, pp81-82 Oct. 2002. [43] J. M. Tarascon and M. Aarmand, “Issues and challenges facing rechargeable lithium batteries,” Natural materials, vol. 414, pp.359-367, Nov. 2001. [44] M. Armans, D. W. Murphy, J. Broadhead, B. C. H. Steele, “Materials for Advanced Batteries”, Plenum press, New York, 1980, 145. [45] B. Scrosati, J. Electrochem.Soc., 1992, 139, 2776. [46] 林元凱,探討有機添加劑對磷酸鋰鐵陰極材料之性能研究,國立中山大學化學研究所碩士論文,1996 [47] 黃廣順,電池電源模組之並聯運轉,國立中山大學化學研究所碩士論文,1995 [48] 賴世榮,智慧型鋰離子電池殘存電量估測之研究,國立中山大學電機工程學系碩士論文,2004。 [49] , Sate of Health, July 06, 2012:www.mpoweruk.com/soh.htm [50] 內田隆裕,圖解電池入門,世茂出版公司,台北市,2010。 [51] Mohan, Undeland, 江炫樟,電力電子學,全華圖書,台北市,1991 [52] wais.ee.kuas.edu.tw/etln/G3/tutor/電力電子技術與電源轉換器介紹.pdf [53] 周東成,工業配線能力本位訓練教材-電池接觸器的認識,行政院勞工委員職業訓練中心,1991。 [54] zh.wikipedia.org/wiki/Relay [55] en.wikipedia.org/wiki/Circuit_breaker [56] 3kW M-field fuel cell module, July 06, 2012: www.m-field.com.tw/download/DM-LPH-8020.pdf. [57] Ballard: fuel cell stack, July 06, 2012: www.ballard.com/files/PDF/Backup_Power/1020ACS_v2.pdf [58] Skinner: solenoid valve, July 06, 2012: www.phionline.com/M%20VALVE_ACTUATION.pdf [59] Gas pressure regulator, July 06, 2012: www.fishercommercialservice.com/ [60] Burkert: pressure sensor, July 06, 2012: www.burkert.com/COM/Products/Sensors-Transmitters-and-Controllers/Pressure-sensors.html [61] Ns-tech: Fans, July 06, 2012: www.ns-tech.com.tw/products-c.shtml [62] S-Bond: DC transmitter, July 06, 2012: www.sbond.asia/product_S.html [63] S-Bond: current shunt, July 06, 2012: www.sh-tw.com.tw/product/250A-600_50MV.htm [64] Gigarise: temperature sensor, July 06, 2012: www.gigarise.com.tw/ [65] Yuasa: lead-acid batteries, July 06, 2012: www.yuasa.com.tw/ [66] Meanwell: Battery charger, July 06, 2012: www.meanwell.com.tw/ [67] A123: Li-Fe batteries, July 06, 2012: hwww.a123systems.com/ [68] RCE: Li-Fe battery charger, July 06, 2012: www.rce168.com.tw/ [69] OMRON: power relay, July 06, 2012: www.omron.com.tw/ [70] Shihlin: system breaker, July 06, 2012: www.seec.com.tw/index.asp [71] Mitsubishi: elevator relay contactor, July 06, 2012: gzescalator.en.alibaba.com/product/523496008-213158472/Mitsubishi_elevator_relay_contactor_SD_N35.html [72] Kyotto: solid state relay, July 06, 2012: www.100y.com.tw/pdf_file/KG1005,10,25,40,2010D.pdf [73] MAC solenoid valve , July 06, 2012: macvalves.com [74] Alicat: flow meter, July 06, 2012: www.alicatscientific.com/ [75] Amrel: DC electric load-meter, July 06, 2012: www.amrelpower.com [76] LEM: Hall sensor, July 06, 2012: www.100y.com.tw/pdf_file/HTB100-P.pdf [77] National Instrument: DAQ Card-6036E, July 06, 2012: taiwan.ni.com/ [78] Toshiba: Portege M500 notebook, July 06, 2012: www.toshiba.com/tai/ [79] Van Overschee, P. and B. De Moor, “N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems,” Automatica, 30(1): p. 75-93, 1994. [80] 陳炫綜,多變數強韌控制理論在質子交換膜燃料電池上的應用,國立台灣大學機械工程研究所博士論文,2009。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63577 | - |
| dc.description.abstract | 本論文針對一組6kW定置型燃料電池混合電力系統進行強韌控制及能量管理,使系統電力輸出穩定、並提升系統效率、降低燃料消耗及能量損耗。
此6kW定置型燃料電池混合電力系統係由燃料電池模組、二次電池組及電力元件所組成,為一個交流電輸入直流電輸出之不斷電系統。當市電中斷前,電力元件將市電轉換為直流電輸出於負載,充電器經由市電啟動對二次電池組充電。當市電中斷後,燃料電池模組與鉛酸電池組以並聯式混合電力鏈進行供電;在低負載時,由燃料電池模組獨立供電;在高負載下,燃料電池模組與鉛酸電池組同時供電,故吾人將針對市電中斷後之供電情形進行強韌控制與能量分析。論文工作分為以下四步驟:首先,我們將針對燃料電池模組設計及安裝強韌控制器,以提昇性能;其次,我們替換原鉛酸電池組為具高放電能力的磷酸鋰鐵電池組,進行性能及效率的比較分析;接著,針對系統電力元件如:轉換器、電力開關等元件進行效率分析,了解各元件能量損耗。最後,我們將混合電力系統整合並進行實驗驗證及效能分析。結果顯示系統效率可由58%~79%提升至65%~84%。 | zh_TW |
| dc.description.abstract | This thesis proposes robust control and power management strategy for a 6kW stationary fuel cell hybrid power system to improve system stability and efficiency and to reduce fuel consumptions.
The thesis deals with a 6kW stationary hybrid fuel cell system that was developed by a Taiwanese company M-Field. The 6kW system consist of two PEMFC modules, batteries and electrical components to form a parallel hybrid power system. The system was designed for telecom base stations to provide uninterruptible power during emergency power failures. First, the batteries were charged before the main power was shut down. In case of grid power failures, the batteries will start-up the balance-of-plant (BOP) of the PEMFC modules. Then power is continuously provided by the parallel hybrid power system. At low current load, the PEMFC modules provide steady power for the base station. At high current load, both the PEMFC modules and batteries provide electricity to the base station. we apply robust control and power management techniques to improve the stability and efficinency of the stationary system. The study was carried out by four steps: First, we apply robust control to the PEMFC modules to improve the system’s performance. Second, we replace the original lead-acid batteries with lithium-iron batteries, and compare their performance and efficiency. Third, we analyse the efficiency of the electrical components to estimate total energy loss. Lastly, we integrate the stationary fuel cell hybrid power system and verify system performance by experiments. Based on the results, the proposed robust control and power management are deemed effective in improving system stability and performance. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:14:15Z (GMT). No. of bitstreams: 1 ntu-101-R99522827-1.pdf: 6345926 bytes, checksum: e5be4f3cfc8fa94207a62c4b604b1a6a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 III 摘要 V ABSTRACT VII 目錄 IX 圖目錄 XII 表目錄 XVI 符號表 XVII 第一章 序論 1 1.1 研究背景與目的 1 1.2 文獻回顧 4 1.3 各章摘要 6 第二章 定置型燃料電池混合電力系統簡介 7 2.1 定置型混合電力系統 7 2.1.1 不斷電系統(Uninterruptible Power Supply;UPS) 8 2.1.2 混合電力鏈 9 2.2 主電力源 - 燃料電池模組 11 2.2.1 燃料電池簡介 11 2.2.2 質子交換膜燃料原理與結構 13 2.2.3 PEMFC理論及極化特性 17 2.3 輔助電力源 - 鋰鐵電池組 23 2.3.1 二次電池簡介 23 2.3.2 鋰鐵電池工作原理與結構 23 2.3.3 電力參數 24 2.3.4 充電方式 26 2.4 電力元件 28 2.4.1 電力整合元件 28 2.4.2 電力轉換元件 29 2.4.3 電力保護元件 30 第三章 混合電力系統架構與硬體實現 33 3.1 混合電力系統架構 33 3.1.1 系統開機程序 35 3.1.2 系統關機程序 36 3.1.3 系統保護判斷 37 3.2 燃料電池模組架構 40 3.3 6kW混和電力系統硬體 42 3.3.1 3kW燃料電池模組硬體 44 3.3.2 二次電池組硬體 48 3.3.3 電力元件硬體 51 3.4 實驗相關設備與硬體實現 53 第四章 強韌控制器設計與實驗 57 4.1 燃料電池模組之系統識別 57 4.1.1 識別實驗的設計 59 4.1.2 識別實驗 60 4.1.3 資料處理 61 4.1.4 結構識別 62 4.1.5 系統識別法 62 4.1.6 模型準確性之評估 63 4.2 強韌控制器設計 66 4.2.1 強韌控制理論 66 4.2.2 控制器設計結果 70 4.3 強韌控制實驗結果與討論 72 第五章 能量管理分析與實現 81 5.1 系統元件能量分析 81 5.1.1 燃料電池模組能量分析 81 5.1.2 二次電池組能量分析 83 5.1.3 電力元件能量分析 87 5.2 3kW混合電力系統能量分析 92 5.2.1 新舊二次電池組之系統能量分析 93 5.2.2 強韌控制器安裝之系統能量分析 99 5.3 6kW混合電力系統之能量分析 102 第六章 結論與未來展望 109 6.1 結論 109 6.2 未來展望 111 參考文獻 113 附錄A:燃料電池的種類與特性 A-1 附錄B:二次電池的種類與特性 B-1 附錄C:二次電池殘餘電量估測 C-1 附錄D:模組2號強韌控制器設計 D-1 附錄E:口試委員問題與回答 E-1 | |
| dc.language.iso | zh-TW | |
| dc.subject | 定置型燃料電池 | zh_TW |
| dc.subject | 能量管理 | zh_TW |
| dc.subject | 強韌控制 | zh_TW |
| dc.subject | 質子交換膜燃料電池 | zh_TW |
| dc.subject | 系統識別 | zh_TW |
| dc.subject | 系統整合 | zh_TW |
| dc.subject | Robust Control | en |
| dc.subject | System Integration | en |
| dc.subject | PEMFC | en |
| dc.subject | System Identification | en |
| dc.subject | Power Management | en |
| dc.title | 定置型燃料電池混合電力系統之控制及能量管理 | zh_TW |
| dc.title | Control and Power Management of a Stationary Fuel Cell Hybrid System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏家鈺(Jia-Yush Yen),蔡宗惠(Tsung-Hui Tsai),呂志誠(Chih-Cheng Lu) | |
| dc.subject.keyword | 質子交換膜燃料電池,定置型燃料電池,系統整合,系統識別,強韌控制,能量管理, | zh_TW |
| dc.subject.keyword | PEMFC,System Integration,System Identification,Robust Control,Power Management, | en |
| dc.relation.page | 118 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
