Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63574
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉?睿
dc.contributor.authorMeng-Shan Wuen
dc.contributor.author吳孟珊zh_TW
dc.date.accessioned2021-06-16T17:14:12Z-
dc.date.available2015-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citationAkhnazarova, S. and V. Kafarov. 1982. Experiment Optimization in Chemistry and Chemical Engineering. Mir Publisher, Moscow.
Akin, D. E., C. E. Lyon, W. R. Windham, and L. L. Rigsby. 1989. Physical degradation of lignified stem tissue by ruminal fungi. Appl. Environ. Microbiol. 55: 611-616.
Alriksson, B., S. H. Rose, W. H. V. Zyl, A. Sjode, N. O. Nilvebrant, and L. J. Jonsson. 2009. Cellulase production from spent lignocelluloses hydrolysates by recombinant Aspergillus niger. Appl. Environ. Microbiol. 75: 2366-2374.
An, J. M., Y. K. Kim, W. J. Lim, S. Y. Hong, C. L. An, E. C. Shin, K. M. Cho, B. R. Choi, J. M. Kang, S. M. Lee, H. Kim, and H. D. Yun. 2005. Evaluation of a novel bifunctional xylanase-cellulase constructed by gene fusion. Enzyme Microb. Technol. 36:989-995.
Anish, R., M. S. Rahman, and M. Rao. 2007. Application of cellulases from an alkalothermophilic Thermomonospora ap. in biopolishing denims. Biotechnol. Bioeng. 96: 48-56.
Aristidou, A. and M. Penttila. 2000. Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11: 187-198.
Bauchop, T. 1979. The gut anaerobic fungi in rumen fiber digestion. Agric. Environ. 6: 339-348.
Bauchop, T. 1983. The gut anaerobic fungi: colonizers of dietary fibre. Page 143-148 in Fibre in Human and Animal Nutrition, G. Wallace. Royal Society of New Zealand, Wellington, NZ.
Barr, D. J. S., H. Kudo, K. D. Jakober, and K. J. Cheng. 1989. Morphology and development of rumen fungi Neocallimastix sp., Piromyces communis and Orpinomyces bovis gen. nov., sp. nov. Can. J. Bot. 67: 2815-2824.
Beguin, P. 1983. Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal. Biochem. 131: 333-336.
Beguin, P. and M. Lemaire. 1996. The cellulosome: an exocellular multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31: 201-236.
Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383.
Blum, D. L., I. A. Kataeva, X. L. Li, and L. G. Ljungdahl. 2000. Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J. Bacteriol. 182: 1346-1351.
Borneman, W. S., D. E. Lin, and L. G. Ljungdahl. 1989. Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Appl. Environ. Microbiol. 55: 1066-1073.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Breton, A., A. Bernalier, M. Dusser, G. Fonty, B. Gaillard-Martinie, and J. Guillot. 1990. Anaeromyces mucronatus nov. gen., nov. sp., a new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol. Letts. 70: 177-182.
Breton, A., M. Dusser, B. G-Martine, J. Guillot, L. Millet, and G. Prensier. 1991. Piromyces rhizinflata nov. sp., a strictly anaerobic fungus from faeces of the Saharian ass: a morphological, metabolic and ultrastructural study. FEMS Microbiol. Letts. 82: 1-8.
Bryant, M. P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25: 1324-1328.
Carmona, E. C., M. R. Brochetto-Braga, A. A. Pizzirani-Kleiner, and J. A. Jorge. 1998. Purifacation and biochemical characterization of an endoxylanase from Aspergillus versicolor. FEMS Microbiol. Letts.
Chang, P., W. S. Tsai, C. L. Tsai, and M. J. Tseng. 2004. Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem. Biophy. Res. Commun. 319: 1017-1025.
Chen, Y. L., T. Y. Tang, and K. J. Cheng. 2001. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol. 47: 1088-1094.
Cho, H. Kim, and H. D. Yun. 2007. Construction of the bifunctional enzyme cellulase-b-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol. Lett. 29:931-936.
Chu, C. Y., C. W. Tseng, P. Y. Yueh, C. H. Duan, and J. R. Liu. 2011. Molecular cloning and characterization of a b-glucanase from Piromyces rhizinflatus. J. Biosci. Bioeng. 5: 541-546.
Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.
Dashtban, M., H. Schraft, and W. Qin. 2009. Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. J. Biol. Sci. 6: 578-595.
Davies, G., and B. Henrissat. 1995. Structures and mechanisms of glycosyl hydrolases. Structure. 3: 853-859.
Davies, G. J., A. M. Brzozowski, M. Dauter, A. Varrot, and M. Schulein. 2000. Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 A resolution. J. Biochem. 348: 201-207.
del Campo, I., I. A. M. Zazpe, M. Echeverria, and I. Echeverria. 2006. Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Ind. Crops Products 24: 214-221.
Dehority, B. A. 1993. Microbial ecology of cell wall fermentation. Page 425-453 in Forage Cell Wall Structure and Digestibility. Jung, H. G., D. R. Buxton, R. D. Hatfield, and J. Ralph. U.S. Dairy Forage Research Center, Madison, USA.
Den Haan, R., S. H. Rose, L. R. Lynd, and W. H. van Zyl. 2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9: 87-94.
Denman, S., G. P. Xue, and B. Patel. 1996. Characterization of a Neocallimastix pariciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Appl. Environ. Microbiol. 62: 1889-1896.
Doi, N., and H. Yanagawa. 1999. Insertional gene fusion technology. FEBS. Lett. 457:1-4
Fan, Z., J. R. Werkman, and L. Yuan. 2009. Engineering of a multifunctional hemicellulase. Biotechnol. Lett. 31:751-757.
Fan, Z., K. Wagschal, C. C. Lee, Q. Kong, K. A. Shen, I. B. Maiti, and L. Yuan. 2009a. The construction and characterization of two xylan-degrading chimeric enzymes. Biotechnol. Bioeng. 102:684-692.
Fan, Z., K. Wagschal, W. Chen, M. D. Montross, C. C. Lee, and L. Yuan. 2009b. Multimeric hemicellulases facilitate biomass conversion. Appl. Environ. Microbiol. 75:1754-1757.
Fan, Z., K. Waschal, C. C. Lee, Q. Kong, K. A. Shan, I. B. Maiti, and L. Yuan. 2008. The construction and characterization of two xylan-degrading chimeric enzymes. Biotechnol. Bioeng. 102:684-692.
Flint, H. J., J. Martin, C. A. McPherson, A. S. Daniel, and J. X. Zhang. 1993. A bifunctional enzyme with separate xylanase and b-(1,3-1,4)-glucanase domains, encoded by the XynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175:2943-2951.
Foster, J. W. 1949. Chemical Activities of the Fungi. Academic Press, New York, USA.
Gamal, R. F. 1985. Effect of substrate pretreatment on microbial protein production. Egypt. J. Microbiol. (Spec. Issue) 81-89.
Ganiger, M. C., S. Bhat, P. Chettri, and M. S. Kuruvinashetti. 2009. Production of endoglucanase by Trichoderma for control of phytopathogenic fungus Sclerotium rolfsii. J. Appl. Sci. Res. 5: 870-875.
Gray, K. A., L. Zhao, and M. Emptage. 2006. Bioethanol. Current Opinion Chem. Biol. 10: 141-146.
Hari, K. S., R. T. Janardhan, and G. V. Chowdary. 2001 Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using thermotolerant yeast. Bioresour. Techonl. 77: 193-196.
Heck, J. X., S. H. Flores, P. F. Hertz, and M. A. Z. Ayub. 2006. Statistical optimization of thermo-tolerant xylanase activity from Amazon isolated Bacillus circulans on solid-state cultivation. Bioresour. Technol. 97: 1902-1906.
Hernandez, M., M. J. C. Hernandez-Coronado, M. D. Montiel, J. Rodriguez, and M. E. Arias. 2001. Analysis of alkali-lignin in a paper mill effluent decolourised with two Streptomyces strains by gas chromatography-mass spectrometry after cupric oxide degradation. J. Chromatography. 919:389-394.
Hong, J., Y. Wang, X. Ye, and Y.-H. P. Zhang. 2008. Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J. Chromatogr. A. 1194: 150-154.
Hong, S. Y., J. S. Lee, K. M. Cho, R. K. Math, Y. H. Kim, S. J. Hong, Y. U. Cho, H. Kim, and H. D. Yun. 2006. Assembling a novel bifunctional cellulase-xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol. Lett. 28:1857-1862.
Hong, S. Y., J. S. Lee, K. M. Cho, R. K. Math, Y. H. Kim, S. J. Hong, Y. U. Cho, S. J. Cho, H. Kim, and H. D. Yun. 2007. Construction of the bifunctional enzyme cellulase-b-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol. Lett. 29:931-936.
Hsueh, H. Y., P. Y. Yueh, B. Yu, X. Zhao, and J. R. Liu. 2010. Expression of Lactobacillus reuteri Pg4 collagen-binding protein gene in Lactobacillus casei ATCC 393 increases its adhesion ability to Caco-2 cells. J. Agric. Food Chem. 58: 12182-12191.
Hung, Y. J., C. C. Peng, J. T. C.Tzen, M. J. Chen, and J. R. Liu. 2008. Immobilization of Neocallimastix patriciarum xylanase on artificial oil bodies and statistical optimization of enzyme activity. Bioresour. Technol. 99: 8662-8666.
Jimenez, J., J. M. Dominguez, M. P. Castillon, and C. Acebal. 1995. Thermoinactivation of cellobiohydrolase I from Trichoderma reesei QM 9419. Carbo. Res. 268: 257-266.
Joachim, K., R. Grasser, H. pikor, and K. Vogel. 2002. Determination of xylanase, b-glucanase, and cellulose activity. Anal. Bioanal. Chem. 374:80-87
Kaar, W. E., C. V. Gutierrez, and C. M. Kinoshita. 1998. Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioengery 14: 277-287.
Khandeparker, R. and M. T. Numan. 2008. Bifunctional xylanases and their potential use in biotechnology. J. Ind. Microbiol. Biotechnol. 35:635-644.
Kim, T. H., and Y. Y. Lee. 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresour. Technol. 96: 2007-2013.
Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood, and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27: 663-693.
Kumar, R., S. Singh, and O. V. Singh. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35:377-391.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophate T4. Nature. 227: 680-685.
Lehtio, J., J. Sugiyama, M. Gustavsson, L. Fransson, M. Linder, and T. T. Teeri. 2003. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc. Natl. Acad. Sci. USA. 100: 484-489.
Li, X. L., H. Chen, and L. G. Ljungdahl. 1997. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl. Environ. Microbiol. 63: 4721-4728.
Lin, H., and V. W. Cornish. 2002. Screening and selection methods for large-scale analysis of protein function. Angew. Chem. Int. Ed. 41:4402-4425.
Liu, J. H., C. F. Tsai, J. W. Liu, K. J. Cheng, and C. L. Cheng. 2001. The catalytic domain of a Piromyces rhizinflata cellulase expressed in Escherichia coli was stabilized by the linker peptide of the enzyme. Enzyme Microb. Technol. 28: 582-589.
Liu, J. R., C. H. Duan, X. Zhao, J. T. C. Tzen, K. J. Cheng, and C. K. Pai. 2008. Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies. Appl. Microbiol. Biotechnol. 79: 225-233.
Liu, Y., M. Yoshida, Y. Kurakata, Y. Miyazaki, K. Igarashi, M. Samejima, K. Fukuda, A. Nishikawa, and T. Tonozuka. 2010. Crystal structure of a glycoside hydrolase family 6 enzyme, CcCel6C, a cellulase constitutively produced by Coprinopsis cinerea. FEBS J. 277: 1532-1542.
Lu, P. and M. G. Feng. 2008. Bifunctional enhancement of a b-glucanasexylanase fusion enzyme by optimization of peptide linkers. Appl. Microbiol. Biotechnol. 79:579-587.
Lu, P., M. G. Feng, W. F. Li, and C. X. Hu. 2006. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced b-glucanase and xylanase expressed in Escherichia coli. FEMS Microbiol. Lett. 261:224-230.
Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577.
Maki, M., M. T. Leung, and W. Qin. 2009. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. J. Biol. Sci. 6: 500-516.
Maobing, T., X. Zhang, A. Kurabi, N. Gilkes, W. Mabee, and J. Saddler. 2006. Immobilization of b-glucosidase on Eupergit C for lignocelluose hydrolysis. Biotechnol. Letts. 28: 151-156.
Mesta, L., C. Rascle, R. Durand, and M. Fevre. 2001. Construction of a chimeric xylanase using multidomain enzymes from Neocalllimastix frontalis. Enzyme Microb. Technol. 29:456-63.
Montgomery, D. C. 1996. Design and Analysis of Experiments. John Wiley and Sons. New York, NY.
Moon, Y.H. et al. Synthesis, structure analyses, and characterization of novel epigallocatechin gallate (EGCG) glycosides using the glucansucrase from Leuconostoc mesenteroides B-1299CB. Journal of Agricultural and Food Chemistry 54(4), 1230-1237, 2006.
Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladish. 2005a. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686.
Mosier, N., R. Hendrichson, N. Ho, M. Sedlak, and M. R. Ladisch. 2005b. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993.
Orpin, C. G. 1975. Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. microbial. 91: 249-262.
Orpin, C. G. and L. Bountiff. 1978. Zoospore chemotaxis in the rumen phycomycete Neocallimastix frontalis. J. Gen. microbial. 104: 113-122.
Orpin, C. G. and Y. Greenwood. 1986. Nutritional and germination requirements of the rumen chytridiomycete Neocallimastix patriciarum. Trans. Br. Mycol. Soc. 86: 178-181.
Orpin, C. G. and K. N. Joblin. 1988. The rumen anaerobic fungi. Page 129-150 in The Rumen Microbial Ecosystem. Elsevier Applied Science, London, UK.
Ozkose, E., B. J. Thomas, D. R. Davies, G. W. Griffith, and M. K. Theodorou. 2001. Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fngus with branched sporangiophores isolated from cattle. Can. J. Bot. 79: 666-673.
Pai, C. K., Y. F. Zeng, P. Y. Yueh, M. J. Chen, L. C. Tung, and J. R. Liu. 2010. Prediction of optimum reaction conditions for the thermo-tolerant acetylxylan esterase from Neocallimastix patriciarum using the response surface methodology. J. Chem. Technol. Biotechnol. 85: 628-633.
Pai, C. K., Z. Y. Wu, M. J. Chen, Y. F. Zeng, J. W. Chen, C. H. Duan, M. L. Li, and J. R. Liu. 2010. Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum. Appl. Microbiol. Biotechnol. 85: 1451-1462.
Perez-Avalos, O., L. M. Sanchez-Herrera, L. M. Salgado, and T. Ponce-Noyola. 2008. A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr. Microbiol. 57:39-44.
Petriz, J., M. M. Gottesman, and J. M. Aran. 2004. An MDR-EGFP gene fusion allows for direct cellular localization, function and stability assessment of p-glycoprotein. Curr. Drug Deliv. 1:43-56.
Saha, B. C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. 30: 279-291.
Satoshi, K., S. Katahira, A. Mizuike, H. Fukuda, and A. Kondo. 2006. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 72 : 1136-1143.
Schein, C. H. 1993. Solubility and secretability. Curr. Opin. Biotechnol. 4: 456-461.
Selig, N., N. Weiss, and Y. Ji. 2008. Enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory, Golden, CO, 80401.
Seo, H. S., Y. J. Koo, J. Y. Lim, J. T. Song, C. H. Kim, J. K. Kim, J. S. Lee, and Y. D. Choi. 2000. Characterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl. Environ. Microbiol. 66:2484-2490.
Shen, H., M. Schmuck, I. Pilz, N. R. Gilkes, D. G. Kilburn, Jr, R. C. Miller, and R. A. J. Warren. 1991. Deletion of the linker connecting the catalytic and cellulose-binding domains of endoglucanase A (CelA) of Cellulomonas fimi alters its conformation and catalytic activity. J. Biol. Chem. 266: 11335-11340.
Shoseyov, O., Z. Shani, and I. Levy. 2006. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70: 283-295.
Siddiqui, K. S., A. A. N. Saqib, M. H. Rashid, and M. I. Rajoka. 2000. Carboxyl group modification significantly altered kinetic properties of purified carboxymethylcellulose from aspergillus niger. Enzyme. Microb. Technol. 27: 467-474.
Taira, H., F. Michihiro, M. Jun-ichi, K. Tohru, K. Kenji, and T. Masayuki. 1992. Production of cellobiose by enzymatic hydrolysis: removal of b-glucosidase from cellulase by affinity precipitation using chitosan. Biotechnol. Bioeng. 41: 405-410.
Teymouri, F., L. Laureano-Perez, H. Alizadeh, and B. E. Dale. 2005. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol. 96: 2014-2018.
Tomme, P., H. Van Tilberugh, G. Petterson, J. Van Damme, J. Vandekerckhove, J. Knowles, T. Teeri, and M. Claeyssens. 1988. Studies of the celluloytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem. 170: 575-581.
van Rooyen, R., B. H.-Hagerdal, D. C. La Grange, W. H. van Zyl. 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J. Biotechnol. 120: 284-295.
Volkel, T., T. Korn, M. Bach, R. Muller, and R. E. Kontermann. 2001. Optimized linker sequences for the expression of monomeric and dimeric bispecific single-chain diabodies. Protein Eng. 14:815-823.
Wood, T. M. and K. M. Bhat. Methods for measuring cellulase activities. 1988. Methods Enzymol. 160: 87-117.
Zeng, Y. F., Y. J. Hung, M. J. Chen, C. C. Peng, J. T. C. Tzen, and J. R. Liu. 2009. Simultaneous refolding, purification, and immobilization of recombinant Fibrobacter succinogenes 1,3-1,4-b-D-glucanase on artificial oil bodies. J. Chem. Technol. Biotechnol. 84: 1480-1485.
Zhang, J. X. and H. J. Flint. 1992. A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. Mol. Microbiol. 6: 1013-1023.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63574-
dc.description.abstract植物的細胞壁主要由纖維素、半纖維素與木質素等構成,而這種複雜的結構較不易被單一纖維分解酵素所分解,進而造成利用上的困難,因此近年來許多研究利用基因工程技術融合多種纖維素分解酵素或半纖維素分解酵素基因,建構出具雙功能或多功能之纖維分解嵌合酵素,與單一功能纖維分解酵素相比,多功能或雙功能纖維分解酵素除了可提升分解植物細胞壁纖維的效率之外,在酵素製程方面亦節省了時間與金錢成本。
本研究係將兩段分別由瘤胃真菌Piromyces rhizinflatus選殖出的β-聚葡萄糖酶 (β-glucanase) cbhYW23-2基因與由Neocallimastix patriciarum選殖出的聚木糖酶 (xylanase) xynCDBFV基因以兩種不同排列順序進行嵌合,表達出分別為β-聚葡萄糖酶在胺端的Cbh-Xyn以及聚木糖在胺端的Xyn-Cbh兩種嵌合纖維分解酵素。β-聚葡萄糖酶與聚木糖酶兩酵素之間由富含甘氨酸的連接胜肽 (GGGGS)2作為連結,以確保酵素間保有各自正確摺疊的空間以及彼此構形的完整性。所得到之嵌合酵素基因序列長度皆為2202個含氮鹼基,表達出的酵素由734個胺基酸組成,分子量約為87 kDa。嵌合酵素以大腸桿菌表達並以親和性管柱純化後,測試酵素活性並與單一酵素進行比較,再以反應曲面法 (response surface methodology) 結合中央合成設計 (central composite design) 及迴歸分析,測定兩嵌合酵素之最適溫度及pH值,結果測得Cbh-Xyn在pH 5.9與52 ℃的條件下有最佳的聚木糖酶活性,比活性為740.6 ± 24 U/mg,而在pH 6.0與44 ℃時有最佳的β-聚葡萄糖酶活性,比活性為1518.3 ± 31 U/mg;而Xyn-Cbh的最適反應條件則是在pH 6.2與50 ℃的條件下有最佳的聚木糖酶活性,比活性為3121 ± 153 U/mg,而在pH 6.1與46 ℃時有最佳的β-聚葡萄糖酶活性,比活性則為2526 ± 206 U/mg。另以天然稻稈作為受質進行酵素水解,亦證實在此最適反應條件下,嵌合纖維分解酵素Xyn-Cbh處理所釋出的還原糖量較單一酵素處理所釋出的還原糖量高。
綜上所述,本研究成功利用反應曲面法得到嵌合纖維分解酵素之最適反應條件,並且證實嵌合酵素Xyn-Cbh具有較佳的酵素活性,有潛力廣泛應用於各種不同條件的生物技術與工業用途。
zh_TW
dc.description.abstractPlant cell walls are comprised of cellulose, hemicellulose and lignin. This complex structure acts as a barrier for degradation by fibrolytic enzymes. Therefore, bifunctional or multifunctional fibrolytic enzymes are more efficient in hydrolysis of plant cell walls and more cost and time saving in enzyme production as compared to the single functional enzymes.
In this study, two chimeric fibrolytic enzymes were constructed by fusion of cbhYW23-2, a β-glucanase gene from ruminal fungus Piromyces rhizinflatus, and xynCDBFV, a xylanase gene from Neocallimastix patriciarum. One of the chimeric enzymes was fused the CbhYW23-2 with the N-terminus of XynCDBFV (Cbh-Xyn) and the other was fused the CbhYW23-2 with the C-terminus of XynCDBFV (Xyn-Cbh). A Gly-rich flexible linker (GGGGS)2 was introduced between CbhYW23-2 and XynCDBFV in order to retain the independent folding of domains and the conformational freedom relative to one another. The resultant chimeric enzymes were composed of 734 amino acid residues with a predicted molecular weight of 87 kDa. To examine the enzyme activities, the parental enzymes, CbhYW23-2 and XynCDBFV, and the chimeric enzymes, Cbh-Xyn and Xyn-Cbh, were heterologously expressed by Escherichia coli and purified by immobilized metal ion-affinity chromatography. Response surface modeling (RSM) combined with central composite design (CCD) and regression analysis were then employed for the planned statistical optimization of the enzyme activities of these two chimeric enzymes. As the results, the optimal reaction condition for the highest xylanase activity of Cbh-Xyn was observed at pH 5.9 and 52 ℃ with specific activity of 740.6 ± 24 U/mg, whereas the highest β-glucanase activity was observed at pH 6.0 and 44 ℃ with specific activity of 1518.3 ± 31 U/mg. The optimal reaction conditions for the highest xylanase and β-glucanase activity of Xyn-Cbh were observed at 50 ℃ and pH 6.2 and at 46 ℃ and pH 6.1 with specific activity of 3121 ± 153 and 2526 ± 205.7 U/mg, respectively. Under the optimal conditions, the chimeric enzyme Xyn-Cbh had higher hydrolytic activities toward rice straw than the parental enzymes.
In conclusion, the results suggested that the chimeric enzyme Xyn-Cbh showed a high hydrolytic activity and has potential for use in a range of various biotechnological and industrial applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:14:12Z (GMT). No. of bitstreams: 1
ntu-101-R99626024-1.pdf: 1838188 bytes, checksum: 3c63ec2692e828e6165cc2374a21c4ce (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
中文摘要 1
英文摘要 3
第一章、文獻探討 5
一、木質纖維素的組成及來源 5
(一) 木質纖維素結構 5
(二) 木質纖維素的來源 6
二、木質纖維素的分解 6
(一) 纖維分解酵素之種類 7
(二) 纖維素分解酶 7
(三) 半纖維素酶 9
(四) 雙功能纖維分解酶 10
(五) 纖維分解酵素的應用 12
(六) β-聚葡萄糖酶CbhYW23-2 13
(七) 聚木糖酶XynCDBFV 14
(八) 研究目的 15
第二章、材料與方法 22
一、CbhYW23-2與XynCDBFV之基因來源以及嵌合酵素之建構 22
(一) 聚葡萄糖酶與聚木糖酶基因來源 22
(二) 嵌合酶表現質體構築 22
(三) 組胺酸標幟融合蛋白純化 25
(四) 嵌合酶蛋白質濃度測定 27
(五) 聚丙烯醯胺膠體電泳分析 29
(六) 酵素活性測定 31
(七) 嵌合酶之最適作用pH值與溫度 33
(八) 嵌合酶對稻桿水解的分析 35
第三章、結果與討論 45
一、嵌合纖維分解酶之胺基酸序列與結構區域分析 45
二、嵌合纖維分解酶於大腸桿菌之表現及純化 46
(一) Cbh-Xyn之蛋白質純化 46
(二) Xyn-Cbh之蛋白質純化 47
三、嵌合纖維分解酶之最適作用pH值與溫度 48
(一) pH值及溫度對酵素活性之影響 48
(二) 反應曲面法模式分析 48
四、嵌合纖維分解酶應用於稻桿之水解 52
第四章、結論 72
參考文獻 73
作者小傳 85
dc.language.isozh-TW
dc.subject聚木糖&#37238zh_TW
dc.subject瘤胃真菌zh_TW
dc.subject嵌合酵素zh_TW
dc.subjectβ-聚葡萄糖&#37238zh_TW
dc.subjectβ-glucanaseen
dc.subjectxylanaseen
dc.subjectruminal fungusen
dc.subjectchimeric enzymeen
dc.title雙功能纖維分解酵素之建構及其特性研究zh_TW
dc.titleConstruction and characterization of bifunctional fibrolytic enzymesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭及忠,劉啟德
dc.subject.keywordβ-聚葡萄糖&#37238,聚木糖&#37238,瘤胃真菌,嵌合酵素,zh_TW
dc.subject.keywordβ-glucanase,xylanase,ruminal fungus,chimeric enzyme,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2012-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved