請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6356完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀(Pen-Hsiu Grace Chao) | |
| dc.contributor.author | Bo-Jiang Lin | en |
| dc.contributor.author | 林栢江 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:26:59Z | - |
| dc.date.available | 2014-09-02 | |
| dc.date.available | 2021-05-16T16:26:59Z | - |
| dc.date.copyright | 2013-09-02 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | 1. Guo, A., et al., Effects of Physiological Electric Fields on Migration of Human Dermal Fibroblasts. Journal of Investigative Dermatology, 2010. 130(9): p. 2320-2327.
2. Song, B., Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo. Journal of Cell Science, 2004. 117(20): p. 4681-4690. 3. Sun, Y.-S., S.-W. Peng, and J.-Y. Cheng, In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process. Biomicrofluidics, 2012. 6(3): p. 034117-12. 4. Zhao, M., Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009. 20(6): p. 674-82. 5. Zhao, M., et al., Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-[gamma] and PTEN. Nature, 2006. 442(7101): p. 457-460. 6. Chao, P.-h.G., et al., Effects of Applied DC Electric Field on Ligament Fibroblast Migration and Wound Healing. Connective Tissue Research, 2007. 48(4): p. 188-197. 7. Allen, Greg M., A. Mogilner, and Julie A. Theriot, Electrophoresis of Cellular Membrane Components Creates the Directional Cue Guiding Keratocyte Galvanotaxis. Current Biology, 2013(0). 8. Cho, M.R., et al., Induced redistribution of cell surface receptors by alternating current electric fields. The FASEB Journal, 1994. 8(10): p. 771-6. 9. Tsai, C.-H., B.-J. Lin, and P.-H.G. Chao, α2β1 integrin and RhoA mediates electric field-induced ligament fibroblast migration directionality. Journal of Orthopaedic Research, 2012. 10. Zhao, M., et al., Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving directionally in a physiological electric field. The FASEB Journal, 2002. 11. Han, J., et al., Integrin beta1 subunit signaling is involved in the directed migration of human retinal pigment epithelial cells following electric field stimulation. Ophthalmic Res, 2011. 45(1): p. 15-22. 12. Jonathan D. Humphries, A.B., Martin J. Humphries, Integrin ligands at a glance. Journal of Cell Science, 2006. 119: p. 3901-3903. 13. Palazzo, A.F., et al., Localized Stabilization of Microtubules by Integrin- and FAK-Facilitated Rho Signaling. Science, 2004. 303(5659): p. 836-839. 14. Ann M. Rajnicek, L.E.F., Colin D. McCaig, Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. Journal of Cell Science, 2006. 119: p. 1723-1735. 15. Burdisso, J.E., A. Gonzalez, and C.O. Arregui, PTP1B promotes focal complex maturation, lamellar persistence and directional migration. Journal of Cell Science, 2013. 126(8): p. 1820-1831. 16. Guilluy, C., R. Garcia-Mata, and K. Burridge, Rho protein crosstalk: another social network? Trends in Cell Biology, 2011. 21(12): p. 718-726. 17. Pike, L.J., Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. The Journal of Lipid Research, 2006. 47(7): p. 1597-1598. 18. Hernandez-Deviez, D.J., et al., Caveolin regulates endocytosis of the muscle repair protein, dysferlin. Journal of Biological Chemistry, 2008. 283(10): p. 6476-6488. 19. Wickstrom, S.A. and R. Fassler, Regulation of membrane traffic by integrin signaling. Trends in Cell Biology, 2011. 21(5): p. 266-273. 20. Sotobori, T., et al., Bone morphogenetic protein-2 promotes the haptotactic migration of murine osteoblastic and osteosarcoma cells by enhancing incorporation of integrin beta1 into lipid rafts. Exp Cell Res, 2006. 312(19): p. 3927-38. 21. Kusumi, A. and K. Suzuki, Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2005. 1746(3): p. 234-251. 22. Leitinger, B. and N. Hogg, The involvement of lipid rafts in the regulation of integrin function. Journal of Cell Science, 2002. 115(5): p. 963-972. 23. Cecile Boscher, I.R.N., Caveolins and Caveolae: Roles in Signaling and Disease Mechanisms, in CAVEOLIN-1: Role in Cell Signaling, Jean-Francois Jasmin, Philippe G. Frank, and Michael P. Lisanti, Editors. 2012. 24. Yang, B., et al., p190 RhoGTPase-Activating Protein Links the 1 Integrin/Caveolin-1 Mechanosignaling Complex to RhoA and Actin Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010. 31(2): p. 376-383. 25. Rey-Barroso, J., et al., The dioxin receptor controls β1 integrin activation in fibroblasts through a Cbp–Csk–Src pathway. Cellular Signalling, 2013. 25(4): p. 848-859. 26. Beardsley, A., et al., Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. Journal of Biological Chemistry, 2005. 280(5): p. 3541-3547. 27. Arpaia, E., et al., The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene, 2012. 31(7): p. 884-896. 28. Feng, C.-h., Y.-c. Cheng, and P.-h.G. Chao, The influence and interactions of substrate thickness, organization and dimensionality on cell morphology and migration. Acta Biomaterialia, 2013. 9(3): p. 5502-5510. 29. Danthi, P. and M. Chow, Cholesterol Removal by Methyl- -Cyclodextrin Inhibits Poliovirus Entry. Journal of Virology, 2003. 78(1): p. 33-41. 30. Carmena, M.J., et al., Cholesterol modulation of membrane fluidity and VIP receptor/effector system in rat prostatic epithelial cells. Regul Pept, 1991. 33(3): p. 287-97. 31. Hart, F.X., et al., Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism. Bioelectromagnetics, 2013. 34(2): p. 85-94. 32. Berdeaux, R.L., et al., Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function. J Cell Biol, 2004. 166(3): p. 317-23. 33. Tandon, N., et al., Electrical stimulation systems for cardiac tissue engineering. Nat. Protocols, 2009. 4(2): p. 155-173. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6356 | - |
| dc.description.abstract | 當微生物或細胞受到電場影響而展現出順著電場方向移動,此為趨電性。許多研究指出膜蛋白的分佈狀況會影響趨電性的行為,在先前的研究中指出α2β1 integrin受電場影響而有極化的現象,且其在交流電與直流電刺激中有著相反的分佈情形,因此本研究想探討細胞膜上的微結構─脂膜筏,在纖維母細胞受交流電或直流電影響後,如何控制細胞的移動性,結果中發現,脂膜筏受電場影響而聚集,且跟α2β1素蛋白有著相似的分佈,此外,九成的α2β1素蛋白坐落在脂膜筏上,如果破壞脂膜筏會抑制纖維母細胞的趨電性行為,另外,抑制caveolin-1的基因表現也會抑制往負極向移動和RhoA的分佈,因此從本研究的研究中,可以知道脂膜筏會藉由caveolin-1影響纖維母細胞趨電性的表現。 | zh_TW |
| dc.description.abstract | Galvanotaxis is a phenomenon in which microorganisms migrate in response with the electric current. Most studies indicate that the redistribution of plasma membrane proteins guides cell directional motility. The previous study showed that α2β1 integrin polarizes with AC and DC electric fields. This study shows when fibroblasts are stimulated by an electric field, lipid rafts polarize and the polarization coincides with asymmetrically-distributing α2β1 integrins. Disruption of lipid rafts inhibits EF-induced directional migration. The caveolin-1 knockdown inhibits cell directional motility and RhoA polarization. The results indicate that lipid raft is a mechanosensor to EF stimulation and lipid raft polarization lead to integrin and caveolin-dependent directional migration. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:26:59Z (GMT). No. of bitstreams: 1 ntu-102-R00548052-1.pdf: 4261881 bytes, checksum: b700b4d8ca1de9592ed6df7513e4660b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 I
序言 II 摘要 III Abstract IV List of Tables VII List of Figures VII Chapter 1. Introduction 1 Chapter 2. Materials and Methods 5 2.1 Primary Porcine Fibroblasts Culture 5 2.2 Microfluidic channel Fabrication 5 2.3 RNA interference 6 2.4 Pharmacological Treatment 7 2.4.1 Cholesterol Depletion 7 2.4.2 Plasma Membrane Solidification 7 2.4.3 Integrin functional block 7 2.5 Electric field stimulation 7 2.6 Fibroblast Behavior Quantification 8 2.7 Lipid Raft Labeling 8 2.8 Reverse Transcription Polymerase Chain Reaction 8 2.9 Immunofluorescence staining 9 2.10 Image Analysis 9 2.11 Statistics 10 Chapter 3. Results 11 3.1 EF-induced lipid raft redistribution 11 3.2 Caveolin-1 signaling pathway 12 Chapter 4. Discussion 14 Reference 34 | |
| dc.language.iso | en | |
| dc.title | 受電場而極化的脂膜筏引導纖維母細胞之方向性移動 | zh_TW |
| dc.title | Electric Field-induced Lipid Raft Polarization Guide Fibroblast Directional Migration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙玲(Ling Chao),蔡偉博(Wei-Bor Tsai) | |
| dc.subject.keyword | 脂膜筏,素蛋白,細胞移動,電場,趨電性, | zh_TW |
| dc.subject.keyword | lipid raft,integrin,migration,electric field,galvanotaxis, | en |
| dc.relation.page | 36 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 4.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
