請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63564完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一平(Yi-Ping Hung) | |
| dc.contributor.author | Chia-Ping Chen | en |
| dc.contributor.author | 陳嘉平 | zh_TW |
| dc.date.accessioned | 2021-06-16T17:14:04Z | - |
| dc.date.available | 2014-08-20 | |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | [1] Y. Adini, Y. Moses, and S. Ullman. Face recognition: the problem of compensating
for changes in illumination direction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):721–732, July 1997. [2] E.-W. Bai. An optimal two-stage identification algorithm for Hammerstein- Wiener nonlinear systems. Automatica, 34(3):333–338, Mar. 1998. [3] E.-W. Bai and Y. Liu. On the least squares solutions of a system of bilinear equations. In IEEE Conference on Decision and Control, and European Control Conference, Dec. 2005. [4] D. H. Ballard and C. M. Brown. Computer Vision. Prentice Hall, May 1982. [5] H. Barrow and J. Tenenbaum. Recovering intrinsic scene characteristics from images. Computer Vision System, Academic Press, New York, pages 3–26, 1978. [6] S. Barsky and M. Petrou. The 4-source photometric stereo technique for threedimensional surfaces in the presence of highlights and shadows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10):1239–1252, Oct. 2003. [7] R. Basri and D. Frolova. A two-frame theory of motion, lighting and shape. In IEEE Conference on Computer Vision and Pattern Recognition, June 2008. [8] R. Basri and D. Jacobs. Photometric stereo with general, unknown lighting. In IEEE Conference on Computer Vision and Pattern Recognition, Dec. 2001. [9] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):218–233, Feb. 2003. [10] R. Basri, D. Jacobs, and I. Kemelmacher. Photometric stereo with general, unknown lighting. International Journal of Computer Vision, 72(3):239–257, May 2007. [11] J. Begen and R. Hingorani. Hierarchical motion-based frame rate conversion. Technical report, David Sarnoff Research Center, Princeton, NJ, 1990. [12] P. Belhumeur and D. Kriegman. What is the set of images of an object under all possible lighting conditions? In IEEE Conference on Computer Vision and Pattern Recognition, pages 270–277, June 1996. [13] P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-relief ambiguity. International Journal of Computer Vision, 35(1):33–44, Nov. 1999. [14] V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pages 187–194, Aug. 1999. [15] V. Blanz and T. Vetter. Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (9):1063–1074, Sept. 2003. [16] V. Blanz, K. Scherbaum, T. Vetter, and H. P. Seidel. Exchanging faces in images. In Eurographics, 2004. [17] R. Brunelli and T. Poggio. Face recognition: features versus templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042–1052, Oct. 1993. [18] H. Chen, P. Belhumeur, and D. Jacobs. In search of illumination invariants. In IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 254–261, June 2000. [19] W. Chen, M. J. Er, and S. Wu. Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Transactions on Systems, Man and Cybernetics, Part B, 36(2):458–466, Apr. 2006. [20] S. Cohen and C. Tomasi. Systems of bilinear equations. Technical Report CSTR- 97-1588, Computer Science Department, Stanford University, April 1997. [21] E. N. Coleman and R. Jaina. Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry. Computer Graphics and Image Processing, 18(4):309–328, Apr. 1982. [22] J. Fan and L. B. Wolff. Surface curvature and shape reconstruction from unknown multiple illumination and integrability. Computer Vision and Image Understanding, 65(2):347–359, Feb. 1997. [23] D. Frolova, D. Simakov, and R. Basri. Accuracy of spherical harmonic approximations for images of Lambertian objects under far and near lighting. In European Conference on Computer Vision, May 2004. [24] A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):643– 660, June 2001. [25] D. B. Goldman, B. Curless, A. Hertzmann, and S. M. Seitz. Shape and spatiallyvarying BRDFs from photometric stereo. In IEEE International Conference on Computer Vision, Oct. 2005. [26] R. Gross and V. Brajovic. An image preprocessing algorithm for illumination invariant face recognition. In International Conference on Audio- and Video- Based Biometric Person Authentication, June 2003. [27] H. Hayakawa. Photometric stereo under a light source with arbitrary motion. Journal of the Optical Society of America A, 11(11):3079–3089, Nov. 1994. [28] A. Hertzmann and S. M. Seitz. Example-based photometric stereo: Shape reconstruction with general, varying BRDFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1254–1264, Aug. 2005. [29] J. Ho and D. Kriegman. Face Processing: Advanced Modelling and Methods, chapter On the Effect of Illumination and Face Recognition, pages 339–385. Academic Press, 2006. [30] J. Huang and D. Mumford. Statistics of natural images and models. In IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 541– 547, June 1999. [31] J. Huang, P. Yuen, W.-S. Chen, and J. H. Lai. Choosing parameters of kernel subspace LDA for recognition of face images under pose and illumination variations. IEEE Transactions on Systems, Man and Cybernetics, Part B, 37(4): 847–862, Aug. 2007. [32] T. Inui, Y. Tanabe, and Y. Onodera. Group theory and its applications in physics. Springer Verlag, 1990. [33] H. Jin, D. Cremers, A. Yezzi, and S. Soatto. Shedding light on stereoscopic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, June 2004. [34] D. Jobson, Z. Rahman, and G. Woodell. Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing, 6(3):451– 462, Mar. 1997. [35] D. Jobson, Z. Rahman, and G. Woodell. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 6(7):965–976, July 1997. [36] N. Joshi and D. J. Kriegman. Shape from varying illumination and viewpoint. In IEEE International Conference on Computer Vision, Oct. 2007. [37] K. Kanatani. Geometric Computation for Machine Vision. Oxford University Press, 1993. [38] G. Kay and T. Caelli. Estimating the parameters of an illumination model using photometric stereo. Graphical Models and Image Processing, 57(5):365– 388, Sept. 1995. [39] J. J. Koenderink and A. J. van Doom. Representation of local geometry in the visual system. Biological Cybernetics, 55(6):367–375, Mar. 1987. [40] M. Lades, J. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, R. Wurtz, and W. Konen. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 42(3):300–311, Mar. 1993. [41] A. Lakdawalla and A. Hertzmann. Shape from video: Dense shape, texture, motion and lighting from monocular image streams. In IEEE Workshop on Photometric Analysis for Computer Vision, Oct. 2007. [42] D. Lee and H. Seung. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems, volume 13, pages 556– 562, Dec. 2001. [43] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788–791, Oct. 1999. [44] K.-C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):684–698, May 2005. [45] G. Li and S. Zucker. Stereo for slanted surfaces: First order disparities and normal consistency. In Energy Minimization Methods in Computer Vision and Pattern Recognition, Nov. 2005. [46] J. Lim, J. Ho, M.-H. Yang, and D. Kriegman. Passive photometric stereo from motion. In IEEE International Conference on Computer Vision, Oct. 2005. [47] A. Maki, M. Watanabe, and C. Wiles. Geotensity: Combining motion and lighting for 3D surface reconstruction. International Journal of Computer Vision, 48(2):75–90, July 2002. [48] Y. Moses and S. Ullman. Generalization to novel views: Universal, class-based, andmodel-based processing. International Journal of Computer Vision, 29(3): 233–253, Sept. 1998. [49] S. K. Nayar, K. Ikeuchi, and T. Kanade. Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Transactions on Robotics and Automation, 6(4):418–431, Aug. 1990. [50] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi. Efficiently combining positions and normals for precise 3D geometry. ACM Transactions on Graphics, 24(3):536–543, Aug. 2005. [51] F. Nie, S. Xiang, and C. Zhang. Neighborhood MinMax projections. In International Joint Conference on Artificial Intelligence, 2007. [52] M. Osadchy, D. Jacobs, and M. Lindenbaum. On the equivalence of common approaches to lighting insensitive recognition. In IEEE International Conference on Computer Vision, volume 2, pages 1721–1726, Oct. 2005. [53] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1):43–71, Mar. 1982. [54] P. J. Phillips and Y. Vardi. Efficient illumination normalization of facial images. Pattern Recognition Letter, 17(8):921–927, July 1996. [55] L. Qing, S. Shan, W. Gao, and B. Du. Face recognition under generic illumination based on harmonic relighting. International Journal of Pattern Recognition and Artificial Intelligence, 19(4):513–531, 2005. [56] R. Ramamoorthi. Analytic PCA construction for theoretical analysis of lighting variability in images of a Lambertian object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(10):1322–1333, Oct. 2002. [57] R. Ramamoorthi and P. Hanrahan. On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. Journal of the Optical Society of America A, 18(10):2448–2459, Oct. 2001. [58] R. Ramamoorthi, M. Koudelka, and P. Belhumeur. A Fourier theory for cast shadows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27 (2):288–295, Feb. 2005. [59] R. P. N. Rao and D. H. Ballard. An active vision architecture based on iconic representations. Artificial Intelligence, 78(1-2):461–505, Oct. 1995. [60] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison and evaluation of multi-view stereo reconstruction algorithms. In IEEE Conference on Computer Vision and Pattern Recognition, June 2006. [61] S. M. Seitz and K. N. Kutulakos. Plenoptic image editing. International Journal of Computer Vision, 48(2):115–129, July 2002. [62] A. Shashua. On photometric issues in 3D visual recognition from a single 2D image. International Journal of Computer Vision, 21(1-2):99–122, Jan. 1997. [63] A. Shashua and T. Riklin-Raviv. The quotient image: class-based re-rendering and recognition with varying illuminations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2):129–139, Feb. 2001. [64] T. Sim and T. Kanade. Combining models and exemplars for face recognition: An illuminating example. In Workshop on Models versus Exemplars in Computer Vision, 2001. [65] T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12):1615–1618, Dec. 2003. [66] D. Simakov, D. Frolova, and R. Basri. Dense shape reconstruction of a moving object under arbitrary, unknown lighting. In IEEE International Conference on Computer Vision, Oct. 2003. [67] F. Solomon and K. Ikeuchi. Extracting the shape and roughness of specular lobe objects using four light photometric stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4):449–454, Apr. 1996. [68] T. Son and S. Mita. Face recognition under variable lighting using the meanfield method and the gray-level pyramid. IEEE Transactions on Systems, Man and Cybernetics, Part B, 3:2107–2113, Oct. 2005. [69] H. D. Tagare and R. J. P. deFigueiredo. A theory of photometric stereo for a class of diffuse non-lambertian surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2):133–152, Feb. 1991. [70] G. Vogiatzis, C. Hernandez, and R. Cipolla. Reconstruction in the round using photometric normals and silhouettes. In IEEE Conference on Computer Vision and Pattern Recognition, June 2006. [71] Y. Weiss. Deriving intrinsic images from image sequences. In IEEE International Conference on Computer Vision, volume 2, pages 68–75, July 2001. [72] R. J. Woodham. Photometric method for determining surface orientation from multiple images. Optical Engineering, 19(1):139–144, Jan. 1980. [73] A. L. Yuille, D. Snow, R. Epstein, and P. N. Belhumeur. Determining generative models of objects under varying illumination: Shape and albedo from multiple images using SVD and integrability. International Journal of Computer Vision, 35(3):203–222, Dec. 1999. [74] L. Zhang, B. Curless, A. Hertzmann, and S. Seitz. Shape and motion under varying illumination: unifying structure from motion, photometric stereo, and multiview stereo. In IEEE International Conference on Computer Vision, Oct. 2003. [75] L. Zhang, S. Wang, and D. Samaras. Face synthesis and recognition from a single image under arbitrary unknown lighting using a spherical harmonic basis morphable model. In IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 209–216, June 2005. [76] W. Zhao and R. Chellappa. Face processing: advanced modeling and methods. Academic Press, Dec. 2005. [77] S. Zhou, G. Aggarwal, R. Chellappa, and D. Jacobs. Appearance characterization of linear lambertian objects, generalized photometric stereo, and illumination-invariant face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2):230–245, Feb. 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63564 | - |
| dc.description.abstract | 光線變化對於物體的外貌扮演了重要的角色,它造成了外觀的濃淡、反光、及陰影的效果。雖然這個世界因能有如此多樣的光影效果而迷人,這些光影效果卻對許多電腦視覺的問題造成了重大的困難。若試著開始描述光線變化所造成的影響,通常會因它的無窮自由度而感到棘手,儘管此問題的本質看似令人怯步,仍有如球面調和函數這樣顯著的進展被提出。球面調和函數提供了一種一致的數學架構來描述複雜的光線變化。反射出的光線可被看成是入射光線和物體表現反射屬性的一種迴旋積的結果,事實上,一個漫射的物體表面可以被當作是作用在入射光訊號上的一個低頻濾波器,畢竟一個漫射的物體即使在複雜的光線上仍能保有平滑的外觀。若將這些概念正式地用訊號處理的觀點來描述的話,就可導致許多新潁有趣的洞悉及在電腦視覺問題上的實際應用,例如辨視、光線估測、以及形狀重建。在本篇論文中,基於以上的技術我們檢視了幾個典型的電腦視覺問題並提出了一些新奇並有效的方法,先前的方法通常都有些踞限的假設,它們通常簡化甚至忽略光線變化所造成的影響,而我們提出的方法即使在複雜、未受控制的光線下仍能成功運作。 | zh_TW |
| dc.description.abstract | Lighting variation plays an important role on the appearance of objects, as the patterns of shading, specularities, and shadows. While the diverse ways in which our world can be illuminated make this world fascinating, the resulting variation in appearance is a major source of difficulty for many computer vision applications. Modeling the lighting variation may seem intractable at first glance due to its infinite number of degrees of freedom. Despite the daunting nature of this problem, some notable developments including the spherical harmonics are introduced. The spherical harmonics representation provides a coherent mathematical framework for modeling general lighting conditions. The reflected light field is considered as a convolution of the incident lighting and reflectance properties of object surfaces. In effect, a diffuse surface can be viewed as a low-pass filter acting on the incident illumination signal since a diffuse surface has a smooth appearance even if the lighting is complicated. Making these ideas formal in a signal processing framework, the theoretical results lead to many interesting insights and have practical implications of many computer vision problems, such as recognition, lighting estimation, and reconstruction. In this dissertation, we examine some traditional vision problems and propose novel methods based on the above techniques. Restricted assumptions that simplify or even ignore the lighting variation are relaxed such that the proposed methods work under general lighting conditions in uncontrolled environments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T17:14:04Z (GMT). No. of bitstreams: 1 ntu-101-D94922025-1.pdf: 7034896 bytes, checksum: cd33f8f2915d05b3d51a2708c5bb3d31 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要iii
Abstract v List of Figures xi List of Tables xiii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Lighting Normalization for Face Recognition . . . . . . . . . . 4 1.2.2 Four-Source Photometric Stereo . . . . . . . . . . . . . . . . . 4 1.2.3 Pixel-Based Correspondence for Moving Objects . . . . . . . . 5 2 Modeling Lighting Variation with Spherical Harmonics 7 2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Reflection as Convolution . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Spherical Harmonic Representation . . . . . . . . . . . . . . . . . . . 8 3 Lighting Normalization for Face Recognition 13 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Intrinsic Illumination Subspace . . . . . . . . . . . . . . . . . . . . . 20 3.3.1 Intrinsic Illumination Subspace . . . . . . . . . . . . . . . . . 20 3.3.2 Generic Intrinsic Illumination Subspace . . . . . . . . . . . . 23 3.4 Enforcing Non-negative Light with NMF . . . . . . . . . . . . . . . . 26 3.5 Lighting Normalization with Intrinsic Illumination Subspace . . . . . 28 3.6 Experiments and Discussion . . . . . . . . . . . . . . . . . . . . . . . 30 3.6.1 Intrinsic Illumination Subspace . . . . . . . . . . . . . . . . . 32 3.6.2 Lighting Normalization and Face Recognition . . . . . . . . . 34 3.6.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 The 4-Source Photometric Stereo 43 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.1 Modeling Reflection . . . . . . . . . . . . . . . . . . . . . . . 46 4.3 Lighting Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4 Shape and Reflectance Reconstruction . . . . . . . . . . . . . . . . . 51 4.4.1 Refine Lighting Estimation . . . . . . . . . . . . . . . . . . . 52 4.4.2 Refine Reflectance . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4.3 Refine Surface Normals . . . . . . . . . . . . . . . . . . . . . 53 4.4.4 Iterative Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 58 5 Pixel-Based Correspondence for Moving Objects 61 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3 Pixel-Based Correspondence . . . . . . . . . . . . . . . . . . . . . . . 65 5.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.3 Two-Stage Over-Parametrization Method . . . . . . . . . . . 68 5.4 Shape Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . 70 5.4.1 Lighting Estimation . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.2 Shape Reconstruction . . . . . . . . . . . . . . . . . . . . . . 72 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.5.1 Synthetic Experiment . . . . . . . . . . . . . . . . . . . . . . 76 5.5.2 Real Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.6 Extension for General Lighting Conditions . . . . . . . . . . . . . . . 79 5.6.1 Spherical Harmonic Representation . . . . . . . . . . . . . . . 81 5.6.2 Pixel-Based Correspondence . . . . . . . . . . . . . . . . . . . 82 5.6.3 Shape Reconstruction Algorithm . . . . . . . . . . . . . . . . 84 5.7 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 85 6 Conclusions and Future Work 87 Bibliography 89 | |
| dc.language.iso | en | |
| dc.subject | 電腦視覺 | zh_TW |
| dc.subject | 形狀重建 | zh_TW |
| dc.subject | 人臉辨識 | zh_TW |
| dc.subject | 球形調和函數 | zh_TW |
| dc.subject | 光線變化 | zh_TW |
| dc.subject | lighting variation | en |
| dc.subject | face recognition | en |
| dc.subject | shape reconstruction | en |
| dc.subject | computer vision | en |
| dc.subject | spherical harmonics | en |
| dc.title | 光線變化及其對視覺問題之應用 | zh_TW |
| dc.title | Lighting Variation and Its Applications for Vision Problems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 陳祝嵩(Chu-Song Chen) | |
| dc.contributor.oralexamcommittee | 傅楸善(Chiou-Shann Fuh),莊永裕(Yung-Yu Chuang),賴尚宏(Shang-Hong Lai),王才沛(Tsaipei Wang),徐繼聖(Gee-Sern Hsu) | |
| dc.subject.keyword | 電腦視覺,光線變化,球形調和函數,人臉辨識,形狀重建, | zh_TW |
| dc.subject.keyword | computer vision,lighting variation,spherical harmonics,face recognition,shape reconstruction, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
