請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63556
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉?睿 | |
dc.contributor.author | Yue-Chun Wang | en |
dc.contributor.author | 王玥淳 | zh_TW |
dc.date.accessioned | 2021-06-16T17:13:57Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2012-08-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-20 | |
dc.identifier.citation | Abid-Essefi, S., I. Baudrimont, W. Hassen, Z. Ouanes, T. A. Mobio, R. Ananeb, E. E. Creppy, and H. Bacha, 2003. DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by vitamin E. Toxicol. 192: 237-248.
Abbes, S., Z. Ouanes, J. B. Salah-Abbes, Z. Houas, R. Oueslati, H. Bacha, and O. Othman. 2006. The protective effects of hydrated sodium calcium aluminosilicate against haematological, biochemical and pathological changes induced by zearalenone in mice. Toxicon 47: 567-574. Aoudia, N., E. K. Tangni, and Y. Larondelle. 2008. Distribution of ochratoxin A in plasma and tissues of rats fed a naturally contaminated diet amended with micronized wheat fibres: effectiveness of mycotoxin sequestering activity. Food Chem. Toxicol. 46: 871-878. Asao, T., G. Buchi, M. M. Abdel-Kader, S. B. Chang, E. L. Wick, and G. N. Wogan. 1963. Aflatoxins B and G. J. Am. Chem. Sco. 85: 1706-1707. Bacha, H., L. Chekir, F. Ellouz, R. Hadidane, and E. E. Creppy. 1993. Effects of zearalenone on fertilisaiton and gestation in rats. In: Scudamore KA (eds). Proceeding of the UK workshop on occurrence and significance of mycotoxin. Central Sciences Laboratory. The University of West London, London, pp 258-262. Becci, P. J., K. A. Voss, F. G. Hess, M. A. Gello, R. A. Parent, and K. R. Stevens. 1982. Combined two-generation reproduction-teratogenesis study of zearalenone in the rat. J. Appl. Toxicol. 2: 201-206. Begley, M., G. M. Cormac, and C. Hill. 2005. The interaction between bacteria and bile. FEMS Microgiol. Rev. 29: 625-651. Bennet, G. A., A. A. Lagoda, O. L. Shotwell, and C. W. Hesseltine. 1981. Utilization of zearalenone-contaminated corn for ethanol production. J. Amer. Oil Chem. Soc. 58: 974-976. Bezuidenhout, S. C., W. C. A. Gelderblom, C. P. Gorst-Allman, R. M. Horak, W. F. O. Marasas, G. Spiteller, and R. Vleggaar. 1988. Structure elucidation of the fumonisins, mycotoxins from fusarium moniliforme. J. Chem. Soc., Chem. Commun. 1988: 743-745. Binder, E. M., L. M. Tan, L. J. Chin, J. Handl, and J. Richard. 2007. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 137: 265-282. Caldini, G., F. Trotta, and G. Cenci. 2002. Inhibition of 4-nitroquinoline-1-oxide genotoxicity by Bacillus strains. Res. Microbiol. 153: 165-171. Castegnaro, M. and C. P. Wild. 1995. IARC activities in mycotoxin research. Nat. Toxins 3: 327-331. Celyk, K., M. Denly, and T. Savas. 2003. Reduction of toxic effects of aflatoxin B1 by using baker yeast (Saccharomyces cerevisiae) in growing broiler chicks diets. R. Bras. Zootec. 32: 615-619. Cenci, G., G. Caldini, F. Trotta, and P. Bosi. 2008. In vitro inhibitory activity of probiotic spore-forming bacilli against genotoxins. Lett. Appl. Microbiol. 46: 331-337. Ciegler, A., E. B. Lillehoj, R. E. Peterson, and H. H. Hall. 1966. Microbial detoxification of aflatoxin. Appl. Environ. Microbiol. 14: 934-939. Coallier-Ascah, J. and E. S. Idziak. 1985. Interaction between Streptococcus lactis and Aspergillus flavus on production of aflatoxin. Appl. Environ. Microbiol. 49: 163-167. Creppy, E. E., R. Roschenthaler, and G. Dirheimer. 1984. Inhibition of protein synthesis in mice by ochratoxin A and its prevention by phenylalanine. Food Chem. Toxicol. 22: 883-886. Creppy, E. E. 2002. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol. Lett. 127: 19-28. Desai, K., M. C. Sullards, J. Allegood, E. Wang, E. M. Schmelz, M. Hartl, H. Humpf, D. C. Liotta, Q. Peng, and A. H. Merrill. 2002. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim. Biophys. Acta. 1585: 188-192. Divegowda, G., M. V. L. N. Raju, N. Afzali, and H. V. L. N. Swamy. 1988. Mycotoxin picture worldwide: novel solutions for their counteraction. Feed Compounder 18: 22-27. Duc, Le. H., H. A. Hong, N. Fairweather, E. Ricca, and S. M. Cutting. 2003. Bacterial spores as vaccine vehicles. Infect. Immunol. 71: 2810-2818. Duc, Le. H., H. A. Hong, T. M. Barbosa, A. O. Henriques, and S. M. Cutting. 2004. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70: 2161-2171. El-Nezami, H., N. Polychronaki, Y. K. Lee, G. Haskard, R. Juvonen, S. Salminen, and H. Mykkanen. 2004. Chemical moieties and interactions involved in the binding of zearalenone to the surface of Lactobacillus rhamnosus strains GG. J. Agr. Food Chem. 52: 4577-4581. El-Nezami, H., A. Chrevatidis, S. Auriola, S. Salminen, and H. Mykkanen. 2002. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Addit. Contam. 19: 680-686. El-Nezami, H., P. Kankaanpaa, S. Salminen, and J. Ahokas. 1998. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 36: 321-326. Eriksen, G. S., J. Pennington, and J. Schlatter. 2000. Safety evaluation of certain food additives and contaminants. WHO Food Addit. Ser. 44: 393-482. EFSA. 2004. Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to aflatoxin B1 as undesirable substance in animal feed. EFSA J. 39: 1-27. FAO/WHO. 2002. Joint FAO/WHO (Food and Agriculture Organization/ World Health Organization) working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada. Fink-Gremmels, J. and H. Malekinejad. 2007. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol. 137: 326-341. Fuller, A. R. 1989. Probiotics in man and animals. J. Appl. Microbiol. 66: 365-378. Galtier, P. 1978. Contribution of pharmacokinetics studies to mycotoxicology – Ochratoxin. Vet. Sci. Commun. 1: 349-358. Galvano, F., A. Pietri, T. Bertuzzi, M. Bognanno, A. De Angelis, and M. Galvano. 1997. Activated corbons: in vitro affinity for fumonisin B1 and relation of adsorption ability to physicochemical parameters. J. Food Prot. 60: 985-991. Gams, W., M. Christensen, A. H. Onions, J. I. Pitt, and R. A. Samson. 1985. Intrageneric taxa of Aspergillus. In: Samson RA, Pitt JI (eds). Advances in Penicillium and Aspergillus systematics. Plenum Press, New York, pp 55-62. Gelderblom, W. C., K. Jaskiewicz, W. F. Marasas, P. G. Thiel, R. M. Horak, R. Vleggaar, and N. P. Kriek. 1988. Fumonisin-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54: 1806-1811. Grosse, Y., L. Chekir-Ghedira, A. Huc, S. Obrecht-Pflumio, G. Dirheimer, H. Bacha, and A. Pfohl-Leszkowicz. 1997. Retinol, ascorbic acid and α-tocopherol prevent DNA adduct formation in mice treated with the mycotoxins ochratoxin A and zearalenone. Cancer Lett. 114: 225-229. Haskard, C., C. Binnion, and J. Ahokas, 2000. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chem. Biol. Interact. 128: 39-49. Hosono, A., T. Tanabe, and H. Otani. 1990. Binding properties of lactic acid bacteria isolated from kefir milk with mutagenic amino acid pyrolysates. Milchwissenschaft. 45: 647-651. Huwig, A., S. Freimund, and O. Kappeli. 2001. Mycotoxin detoxification of animal feed by different adsorbents. Toxicol. Lett. 122: 179-188. Hyronimus, B., C. L. Marrec, and M. C. Urdaci. 1998. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans. J. Appl. Microbiol. 85: 42-50. Inatsu, Y., N. Nakamura, Y. Yuriko, T. Fushimi, L. Watanasiritum, and S. Kawamoto. 2006. Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand. Lett. Appl. Microbiol. 43: 237-242. James, L. J. and T. K. Smith. 1982. Effect of dietary alfalfa on zearalenone toxicity and metabolism in rats and swine. J. Anim. Sci. 55: 110-118. Jard, G., T. Liboz, F. Mathieu, A. Guyonvarch, and A. Lebrihi. 2009. Adsorption of zearalenone by Aspergillus japonicus conidia: new trends for biological decontamination in animal feed. World Mycotoxin J. 2: 391-397. JECFA, Joint FAO/WHO Expert Committee on Food Additives, 53rd Report. 2000. Safety evaluation of certain food additives. WHO Food Additives Series 44. Jelinek, C. F., A. E. Pohland, and G. E. Wood. 1989. Worldwide occurrence of mycotoxins in foods and feeds-an update. J. AOAC Int. 72: 223-230. Jiang, S. Z., Z. B. Yang, W. R. Yang, J. Gao, F. X. Liu, J. Broomhead, and F. Chi. 2011. Effects of purified zearalenone on growth performance, organ size, serum metabolites and oxidative stress in post-weaning gilts. J. Anim. Sci. 89: 3008-3015. Kabak, B. and D. W. Alan. 2006. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Crit. Rev. Food Sci. 46: 593-619. Karaman, M., H. Basmacioglu, M. Ortatatli, and H. Oguz. 2005. Evaluation of the detoxifying effect of yeast glucomannan on aflatoxicosis in broilers as assessed by gross examination and histopathology. Brit. Poult. Sci. 46: 394-400. Kaur, I. P., A. Kuhad, A. Garg, and K. Chopra. 2009. Probiotics: delineation of prophylactic and therapeutic benefits. J. Med. Food 12: 219-235. Kish, S. J., C. Morito, and O. Hornykiewicz. 1985. Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci. Lett. 58: 343-346. Kuiper-Goodman, T., P. M. Scott, and H. Watanabe. 1987. Risk assessment of the mycotoxin zearalenone. Regul. Toxicol. Pharmacol. 7: 253-306. Lily, D. M. and R. H. Stillwell. 1965. Probiotics: growth-promoting factors produced by microorganisms. Science 147: 747-748. Liong, M. T. 2008. Safety of probiotics: translocation and infection. Nutr. Rev. 66: 192-202. Marin, M. L., J. Murtha, W. Dong, and J. J. Pestka. 1996. Effects of mycotoxins on cytokine production and proliferation in EL-4 thymoma cells. J. Toxicol. Environ. Health 48: 379-396. Madhyastha, M. S., A. A. Frohlich, and R. R. Marquardt. 1992. Effect of dietary cholestyramine on the elimination pattern of ochratoxin A in rats. Food and Chem. Toxicol. 30: 709-714. Malekinejad, H., B. Colenbrander, and J. Fink-Gremmels. 2006. Hydroxysteroid dehydrogenases in bovine and porcine granulosa cells convert zearalenone into its hydroxylated metabolites alpha-zearalenonl and beta-zearalenol. Vet. Res. Commun. 30: 445-453. Mehmood, Z., A. G. Smith, M. J. Tucker, F. Chuzel, and N. G. Carmichael. 2000. The development of methods for assessing the in vivo oestrogen-like effects of xenobiotics in CD-1 mice. Food Chem. Toxicol. 38: 493-501. Miazzo, R., C.A.R. Rosa, E. C. De Queiroz Carvalho, C. Magnoli, S. M. Chiacchiera, G. Palacio, M. Saenz, A. Kikot, E. Basaldella, and A. Dalcero. 2000. Efficacy of synthetic zeolite to reduce the toxicity of aflatoxin in broiler chicks. Poult. Sci. 79: 1-6. Mirvish, S. S., Q. Huang, S. C. Chen, D. F. Birt, G. W. Clark, R. A. Hinder, T. C. Smyrk, and T. R. Meester. 1993. Metabolism of carcinogenic nitrosamines in the rat and human esophagus and induction of oesophageal adenocarcinoma in rats. Endoscopy 25: 627-631. Morgavi, D. P. and R. T. Riley. 2007. An historical overview of field disease outbreaks known or suspected to be caused by consumption of feeds contaminated with Fusarium toxins. Anim. Feed Sci. Technol. 137: 201-212. Morotomi, M. and M. Mutai. 1986. In vitro binding of potent mutagenic pyrolysates by intestinal bacteria. J. Natl. Cancer Inst. 77: 195-201. Nageswara R., S. B. and R. C. Chopra. 2001. Influence of sodium bentonite and activated charcoal on aflatoxin M1 excretion in milk of goats. Small Ruminant Res. 41: 203-213. NTP (National Toxicology Program). 1982. Carcinogenesis bioassay of zearalenone in F 344/N rats and B6C3F1 mice. Technical Report Series No. 235, Department of Health and Human Services, Research triangle Park, NC. Ouanes, Z., I. Ayed-Boussema, T. Baati, E. E. Creppy, and H. Bacha. 2005. Zearalenone induces chromosomes in mouse bone marrow: preventive effect of 17β-estradiol, progesterone and Vitamin E. Mutat. Res. 565: 139-149. Parker, R. B. 1974. Probiotics, the other half of the antibiotic story. Anim. Nutr. Health. 29: 4-8. Pestka, J. J. 2007. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 137: 283-298. Petchkongkaew, A., P. Taillandier, P. Gasaluck, and A. Lebrihi. 2007. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): screening for aflatoxin B1 and ochratoxin A detoxification. J. Appl. Microbiol. 104: 1495-1502. Peteri, Z, J. Teren, C. Vagvolgyi, and J. Varga. 2007. Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts. Food Microbiol. 24: 205-210. Pfohl-Leszkowicz, A., L. Chekir-Ghedira, and H. Bacha. 1995. Genotoxicity of zearalenone, an estrogenic mycotoxin: DNA adduct formation in female mouse tissues. Carcinog. 16: 2315-2320. Phillips, T. D., E. Afriyie-Gyawu, J. Williams, H. Huebner, N. A. Ankrah, D. Ofori-Adjei, P. Jolly, N. Johnson, J. Taylor, A. Marroquin-Cardona, L. Xu, L. Tang, and J. S. Wang. 2008. Reducing human exposure to aflatoxin through the use of clay: a review. Food Addit. Contam. 25: 134-145. Pinchuk, I. V., P. Bressollier, B. Verneuil, B. Fenet, I. B. Sorokulova, F. Megraud, and M. C. Urdaci. 2001. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob. Agents Chemother. 45: 3156-3161. Qingjun, L., X. Liang, and F. Chen. 2011. Detoxification of zearalenone by viable and inactivated cells of Planococcus sp. Food Control 22: 191-195. Ramos, A. J. and E. Hernandez. 1996. In vitro aflatoxin adsorption by means of a montmorillonite silicate - A study of adsorption isotherms. Anim. Feed Sci. Technol. 62: 263-269. Ramos, A. J. and E. Hernandez. 1997. Prevention of aflatoxicosis in farm animals by means of hydrated sodium calcium aluminosilicate addition to feedstuffs: a review. Anim. Feed Sci. Technol. 65: 197-206. Richard, J. L., G. A. Bennett, P. F. Ross, and P. E. Nelson. 1993. Analysis of naturally occurring mycotoxins in feedstuffs and food. J. Anim. Sci. 71:2563-2574. Saarela, M., G. Mogensen, R Fonden, J. Matto, and T. Mattila-Sandholm. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotech. 84: 197-215. Salah-Abbes, J. B., S. Abbes, Z. Haous, and R. Oueslati. 2009. Raphanus sativus extract prevents and ameliorates zearalenone-induced peroxidative hepatic damage in BALB/c mice. J. Pharm. Pharmacol. 61: 1545-1554. Salah-Abbes, J. B., S. Abbes, Z. Haous, M. A. Abdel-Wahhab, and R. Oueslati. 2008. Zearalenone induces immunotoxicity in mice: possible protective effects of radish extract (Raphanus sativus). J. Pharm. Pharmacol. 60: 761-770. Scott, P. M. 1991. Possibilities of reduction or elimination of mycotoxins present in cereal grains. In: Chelkowski, J (eds). Cereal grains: mycotoxins, fungi and quality in drying and storage. Elsevier Science Publishers, Amsterdam, Netherlands, pp 529-572. Sera, N., K. Morita, M. Nagasoe, H. Tokieda, T. Kitaura, and H. Tokiwa. 2005. Binding effect of polychlorinated compounds and environmental carcinogens on rice bran fiber. J. Nutr. Biochem. 16: 50-58. Shi, Y. H., Z. R. Xu, J. L. Feng, and C. Z. Wang. 2006. Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chicks. Anim. Feed Sci. Technol. 129: 138-148. Simen, M. C. 2011. Bacillus probiotics. Food Microbiol. 28: 214-220. Smith, T. K. 1980. Influence of dietary fiber, protein and zeolite on zearalenone toxicosis in rats and swine. J. Anim. Sci. 50: 278-285. Solfrizzo, M., A. Visconti, G. Avantaggiato, A. Torres, and S. Chulze. 2000. In vitro and in vivo studies to assess the effectiveness of cholestyramine as a binding agent for fumonisins. Mycopathologia 151:147-153. Sreekumar, O. and A. Hosono. 1998. Antimutagenicity and the influence of physical factors in binding Lactobacillus gasseri and Bifidobacterium longum cells to amino acid pyrolysates. J. Dairy Sci. 81: 1508-1516. Sreekumar, O. and A. Hosono. 1998. The heterocyclic amino binding receptors of Lactobacillus gasseri cells. Mutat. Res. 421: 65-72. Stanley, V. G., R. Ojo, S. Woldesenbet, D. H. Hutchinson, and L. F. Kubena. 1993. The use of Saccharomyces cerevisiae to suppress the effect of aflatoxicosis in broiler chicks. Poult. Sci. 72: 1867-1872. Takemura, H., J. Shim, K. Sayama, A. Tsubura, B. T. Zhu, and K. Shimoi. 2007. Characterization of the estrogenic acitivitis of zearalenone and zeranol in vivo and in vitro. J. Steroid Biochem. 103: 170-177. Tanabe, T., K. Suyama, and A. Hosono. 1994. Effect of sodium dodecyl-sulphate on the binding of Lactococcus lactis ssp. Lactis with 3-amino-1,4-dimethyl-5H-pyrido[3,4-b]indole. J. Dairy Res. 61: 311-315. Tanaka, T., A. Hasegawa, S. Yamamoto, U. S. Lee, Y. Sugiura, and Y. Ueno. 1988. Worldwide contamination of cereals by the Fusarium mycotoxins nivalenol, deoxynivalenol, and zearalenone. J. Agric. Food Chem. 36: 979-983. Thyagaraja, N. and A. Hosono. 1994. Binding properties of lactic acid bacteria from “Idly” towards food-borne mutagens. Food Chem. Toxicol. 32: 805-809. Tomaszewski, J., R. Miturski, A. Semczuk, J. Kotarski, and J. Jakowicki. 1998. Tissue zearalenone concentration in normal, hyperplastic and neoplastic human endometrium. Ginekol. Pol. 69: 363-366. Underhill, K. L., B. A. Rotter, B. K. Thompson, D. B. Prelusky, and H. L. Trenholm. 1995. Effectiveness of cholestyramine in the detoxification of zearalenone as determined in mice. Environ. Contam. Toxicol. 54: 128-134. Urdaci, M. C. and I. Pinchuk. 2004. Antimicrobial activity of Bacillus probiotics. In: Ricca E, Henriques AO, Cutting SM (eds). Bacterial spore formers: probiotics and emerging applications. Horizon Bioscience, Norfolk, UK, pp 171-182. Varga, J., K. Rigo, and J. Teren. 2000. Degradation of ochratoxin A by Aspergillus species. Int. J. Food Microbiol. 59: 1-7. Varga, J., Z. Peteri, K. Tabori, J. Teren, and C. Vagvolgyi. 2005. Degradation of ochratoxin A and other mycotoxins by Rhizopus isolates. Int. J. Food Microbiol. 99: 321-328. Voss, K. A., G. W. Smith, and W. M. Haschek. 2007. Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim. Feed Sci. Technol. 137: 299-325. Wu, Q., A. Jezkova, Z. Yuan, L. Pavlikova, V. Dohnal, and K. Kuca. 2009. Biological degradation of aflatoxins. Drug Metab. Rev. 41: 1-7. Yi, P. J., C. K. Pai, and J. R. Liu. 2011. Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone. World J. Microbiol. Biotechnol. 27: 1035-1043. Zhang, X. B. and Y. Ohta. 1990. Antimutagenicity and binding of lactic acid bacteria from a Chinese cheese to mutagenic pyrolyzates. J. Dairy Sci. 73: 2702-2710. Zourgui, L., E. E. Golli, C. Bouaziz, H. Bacha, and W. Hassen. 2008. Catus (Opuntia ficus-indica) cladodes prevent oxidative damage induced by the mycotoxin zearalenone in BALB/c mice. Food Chem. Toxicol. 46: 1817-1824. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63556 | - |
dc.description.abstract | 玉米烯酮為黴菌所產生之次級代謝物,為鐮菌屬真菌所產生之黴菌毒素,常見於玉米、小麥、大麥等穀物中。玉米烯酮可能對家畜造成不孕、流產等繁殖性能上的影響,亦具有致癌性、基因毒性、血液毒性或免疫毒性等,對家畜或人體健康造成威脅。研究顯示Bacillus licheniformis CK1在in vitro試驗中可降低培養液中玉米烯酮含量,其機制可能為降解作用及吸附作用。本研究探討B. licheniformis CK1與玉米烯酮吸附作用之成分與效果,及是否可於體內降低玉米烯酮之毒性。
本研究首先分析活菌、熱致死及酸致死形式之B. licheniformis CK1吸附玉米烯酮之能力,結果顯示,熱致死及酸致死菌之吸附效果較活菌好,而活菌及熱致死菌在高濃度玉米烯酮(50 ppm)下之吸附作用趨於飽和。為了解菌體成分與玉米烯酮吸附之相關性,B. licheniformis CK1以不同化學試劑或酵素進行前處理,再分析其吸附效果變化。結果顯示,以pronase E處理後,酸致死之B. licheniformis CK1吸附玉米烯酮的濃度顯著降低,以8 M尿素處理後,活菌及熱致菌體吸附之濃度亦顯著降低,推測B. licheniformis CK1與玉米烯酮吸附之成分主要為細胞壁表面之蛋白質。此外,不同金屬離子強度(125-1000 mM的Na+或Ca2+)或不同pH(pH 1.5-8.5)之環境,皆不影響其吸附效果,推測其吸附機制與靜電作用或氫鍵的形成無關,並且於胃腸道中各階段皆可進行吸附作用。 進一步以六週齡雌性BALB/c小鼠進行試驗,結果顯示,以口服方式連續28天每天給予小鼠玉米烯酮40 mg/kg BW,造成小鼠肝臟相對重量有下降的趨勢,並使血清丙胺酸轉胺酶(ALT)含量上升及血液尿素氮(BUN)含量下降,肝臟抗氧化酵素過氧化氫酶(CAT)活性亦有下降之趨勢,B. licheniformis CK1的餵予則可降低這些毒性影響;然而,licheniformis CK1的餵予無法改善玉米烯酮造成的血清總免疫球蛋白G(IgG)及細胞激素-1β(IL-1β)含量之變化。 綜上所述,B. licheniformis CK1具有良好的吸附玉米烯酮能力,於不同環境下其吸附效果仍相當穩定,推測其細胞壁表面與玉米烯酮吸附之成分主要為蛋白質,其詳細作用機制仍需進一步研究。而以口服方式餵予B. licheniformis CK1可部分降低玉米烯酮對小鼠之毒性影響,待更多研究以確認其於體內去除玉米烯酮毒性之效果。 | zh_TW |
dc.description.abstract | Zearalenone (ZEN), one kind of mycotoxins, is a phenolic resorcylic acid lactone produced by certain species of Fusarium that infects cereals and grains, such as corn, oats, wheat and hey. ZEN can induce infertility, abortion or other breeding problems in livestock. Furthermore, it is carcinogenic, genotoxic, hepatotoxic and immunotoxic in both livestock and humans. Bacillus licheniformis CK1 was found to be capable to decrease ZEN residue in vitro, and the mechanisms might be both adsorption and degradation. This study is aimed at investigation of the binding interaction between B. licheniformis CK1 and ZEN and evaluating the efficacy of detoxification of ZEN by B. licheniformis CK1 in BALB/c mice.
First, the extent of ZEN binding over the range of 5-50 ppm (37℃, 30 min) was studied for viable, heat- and acid-killed B. licheniformis CK1. Both heat- and acid-killed bacteria showed greater ZEN-binding ability than viable bacteria; the absorption of ZEN by viable and heat-killed bacteria seemed to be saturated at higher initial ZEN concentration. To identify the type of chemical moieties and interactions involved in binding with ZEN, B. licheniformis CK1 was subjected to different chemical and enzymatical treatments prior to the binding experiments. Pre-treating acid-killed B. licheniformis CK1 with pronase E significantly decreased ZEN bound concentration, and pre-treating viable and heat-killed bacteria with 8 M urea significantly decreased ZEN bound concentration, suggesting that ZEN binds predominantly to protein components. Besides, ionic strength (125-1000 mM of Ca2+ or Na+) and pH value (pH 1.5-8.5) did not affect the concentration of ZEN bound with B. licheniformis CK1, suggesting that electrostatic interactions and hydrogen bonding do have minor effects on binding and that bacterial binding of ZEN might occur at any point along the gastrointestinal tract. In animal trial, fifty 7-week old BALB/c mice were divided into five groups (10 mice/group) and orally administered 1) PBS; 2) olive oil; 3) 109 CFU/kg BW of B. licheniformis CK1 in PBS; 4) 40 mg/kg BW of ZEN in olive oil; 5) 40 mg/kg BW of ZEN in olive oil + 109 CFU/kg BW of B. licheniformis CK1 in PBS each day for 28 days. The mice were sacrificed at the end of experiment and the blood and organ samples were collected and analyzed. The results showed that, compared with control groups, liver relative weight tended to decrease in ZEN group but not in ZEN + B. licheniformis CK1 group. ZEN treatment resulted in a significant increase of alanine aminotransferase (ALT) level in plasma and a decrease of blood urea nitrogen (BUN) level. Moreover, ZEN treatment also caused a slight decrease of liver catalase (CAT) activity, indicating that the liver might be injured. Treatment with ZEN and B. licheniformis CK1 simultaneously seemed to restore these changes. However, treatment with ZEN and B. licheniformis CK1 simultaneously did not decrease the elevated level of plasma interleukin-1β (IL-1β) and increase the decreased level of total immunoglobulin G (IgG) induced by ZEN. In conclusion, the ZEN binding ability of B. licheniformis CK1 is stable in various conditions. The exact binding sites on the surface of B. licheniformis CK1 might be protein components. Oral administration of B. licheniformis CK1 could partially ameliorate the harmful effect of ZEN in mice. More studies needs to be investigated to confirm the protective effects of B. licheniformis CK1 on ZEN toxicity in vivo. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:13:57Z (GMT). No. of bitstreams: 1 ntu-101-R99626009-1.pdf: 1977162 bytes, checksum: 496cbc74e28c7aad96ed2f5d7a16fbd6 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要 ………………………………………………………………………………....... 1
英文摘要 …………………………………………………………………………………... 3 第一章、 文獻探討 ………………………………………………………………………. 5 一、 Bacillus licheniformis CK1 ………………………………………………………. 5 (一) 高度酵素活性 ……………………………………………………………... 5 (二) 不具內毒素基因 ………………………………………………………...… 5 (三) 耐酸及耐膽鹽 …………………………………………………………...… 5 (四) 去除黴菌毒素之能力 .…………………………………………………….. 6 二、 黴菌毒素 ………………………………………………………………………… 7 (一) 黃麴毒素 …………………………………………………………………... 7 (二) 嘔吐毒素……………………………………………………………………. 7 (三) 伏馬鐮孢毒素 ……………………………………………………………... 8 (四) 玉米烯酮 …………………………………………………………………... 8 (五) 赭麴毒素 …………………………………………………………………... 9 三、 去除黴菌毒素之方法 ………………………………………………………….. 10 (一) 吸附劑 ……………………………………………………………………. 10 (二) 生物轉化劑 ………………………………………………………………. 13 四、 玉米烯酮毒性 …..……………………………………………………………… 14 五、 玉米烯酮污染現況 …………………………………………………………….. 16 第二章、 材料與方法 …………………………………………………………………... 26 第一節 B. licheniformis CK1吸附玉米烯酮之試驗 ………………………………… 26 第二節 B. licheniformis CK1於小鼠體內降低玉米烯酮毒性之探討 ……………… 33 第三章、 結果與討論 …………..………………………………………………………. 42 第一節 B. licheniformis CK1吸附玉米烯酮之試驗 …………………………………. 42 第二節 B. licheniformis CK1於小鼠體內降低玉米烯酮毒性之探討 ………………. 52 第四章、 結論 ……………………………..……………………………………………. 70 參考文獻 …………………………………………………………………………………. 71 | |
dc.language.iso | zh-TW | |
dc.title | Bacillus licheniformis CK1降低玉米烯酮毒素之評估 | zh_TW |
dc.title | Evaluation of Detoxifying Effect of Bacillus licheniformis CK1 on Zearalenone | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 余碧,彭及忠,陳明汝,劉啟德 | |
dc.subject.keyword | 玉米烯酮,黴菌毒素,B. licheniformis CK1, | zh_TW |
dc.subject.keyword | myxotoxin,zearalenone,Bacillus licheniformis CK1, | en |
dc.relation.page | 81 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。