請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63547
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王珮玲(Pei-Ling Wang) | |
dc.contributor.author | Zhe-Wei Hsu | en |
dc.contributor.author | 許哲維 | zh_TW |
dc.date.accessioned | 2021-06-16T17:13:49Z | - |
dc.date.available | 2012-08-20 | |
dc.date.copyright | 2012-08-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-20 | |
dc.identifier.citation | 張永欣 (2011)。臺灣東部雷公火泥火山之微生物甲烷循環。國立臺灣大學地質科學研究所碩士論文,共111頁
趙鴻椿 (2003)。臺灣地區泥火山氣體成分分析及其對全球甲烷來源的可能影響。國立成功大學地球科學研究所碩士論文,共90頁 Alain, K., Holler, T., Musat, F., Elvert, M., Treude, T., Kruger, M.. (2006) Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ. Microbiol. 8, 574–590 Aloisi, G., Bouloubassi, I., Heijs, S.K., Pancost, R.D., Pierre, C., et al. (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet. Sci. Lett., 203, 195–203 Alperin M.J., Reeburgh W.S. (1985) Inhibition experiments on anaerobic methane oxidation. Appl. Environ. Microbiol., 50, 940−945 Anupa, N., Asha, J, and Sanjeev, S. (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water, Air and Soil Pollution, 180, 199-212 Barnes, R.O., Goldberg, E.D. (1976) Methane production and consumption in anoxic marine sediments. Geology, 4, 297–300 Beal, E.J., House, C.H., and Orpan, V.J. (2009) Manganeseand iron-dependent marine methane oxidation. Science, 325, 184–187. Blumenberg, M., Seifert, R., Nauhaus, K., Pape, T., Michaelis, W. (2005) In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Appl. Environ. Microbiol. 71, 4345–4351 Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., et al. (2000) A marine microbialconsortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626 Boetius, A., Holler, T., Knittel, K., Felden, J., and Wenzhofer, F. (2008) The seabed as natural laboratory: lessons from uncultivated methanotrophs. In Microbiol Monogr. Berlin: Springer-Verlag. In press Boles, J.R. (1982) Active albitization of plagioclase, Gulf Coast Tertiary, Amer. J. Sci., 282, 165-180. Bousquet, P., Ciais, P., Miller, J.B., Dlugokencky, E.J., Hauglustaine, D.A., Prigent, C., et al. (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439–443. Bowman, J. (2006) The Methanotrophs - The Families Methylococcaceae and Methylocystaceae. In The Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds): Springer New York, pp.266-289 Brazelton, W.J., Schrenk, M.O., Kelley, D.S., Baross, J.A. (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl. Environ. Microbiol. 72, 6257–6270 Canfield, D.E., Thamdrup, B., and Kristensen, E. (2005) The Iron and Manganese cycle. In “Aquatic Geomicrobiology.”, pp. 269-312, Elservier Academic Press, California Childers, S.E., Ciufo, S., and Lovley, D.R. (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, 416, 767-769 Chang, Y-H., Cheng T-W., Lai W-J., Tsai, W-Y., Sun C-H., Lin, L-H., and Wang, P-L. (2012) Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan. Environmental Microbiology, 14, 895-908 Chappellaz, J., Barnola, J.M., Raynaud, D. et al. (1990) Ice-core record of atmospheric methane over the past 160,000 years. Nature, 345, 127~131 Chen, C-H. (1986) Petrology and genesis of cognate plutonic in andesites of east Coastal Range, Lutao and Lanhsu, Taiwan., Mem. Geol. Soc. China, 7, 259-282. Chen, C-H. (1988) Mineral compositions of primary phases in ultramafic rocks in the Coastal Range, eastern Taiwan and implication of source region of these rocks, Acta Geol. Taiwanica, 26, 193-222. Conrad, R. (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol, 28, 193~202. Dimitrov, L. (2002) Mud volcanoes-the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev., 59, 49-76 Etiope, G., Baciu, C., Caracausi, A., Italiano, F. and Cosma, C. (2004a), Gas flux to the atmosphere from mud volcanoes in eastern Romania. Terra Nova, 16, 179– 184. Etiope, G., Feyzullayev, A., Milkov, A.V., Waseda, A., Mizobe, K., and Sun, C.H. (2009) Evidence of subsurface anaerobic biodegradation of hydrocarbons and potential secondary methanogenesis in terrestrial mud volcanoes. Marine and Petroleum Geology, 26, 1692-1703 Garcia, J.-L., Patel, B.K.C., and Ollivier, B. (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe, 6, 206-226. Gieskes, J.M., You, C.F., Lee, T., Yui, T.F., Chen, H.W. (1992) Hydrogeochemistry of mud volcanoes in Taiwan. Acta Geologica Taiwanica, 30, 79-88. Hanson R.S., and Hanson T.E. (1996) Methanotrophic bacteria. Microbiol Res, 60, 439−471. Harrison, B.K., Zhang, H., Berelson, W., Orphan, V.J. (2009) Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl. Environ. Microbiol. 75, 1487–1499 Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F. (1999) Methane-consuming Archaebacteria in marine sediments. Nature, 398, 802–805 Hoehler T.M., Alperin M.J., Albert D.B., Martens C.S. (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob. Biogeochem. Cycles, 8, 451–464 Houbron, E., Torrijos, M., Capdeville, B. (1999) An alternative use of biogas applied at the water denitrification. Water Science and Technology, 40, 115−122. Inagaki, F., Kuypers, M.M.M., Tsunogai, U., Ishibashi, J., Nakamura, K., et al.(2006) Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proc. Natl. Acad. Sci.USA, 103, 14164–14169 Iversen N., Jorgensen B.B., (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr., 30, 944–955 Knittel, K., Losekann, T., Boetius, A., Kort, R., Amann, R.. (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 Knittel, K., and Boetius, A. (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol, 63, 311–334. Kopf, A.J. (2002) Significance of mud volcanism. Rev. Geophys., 40, 1-51 Kruger, M., Treude, Tina., Wolters, H., Nauhaus, K., and Boetius, A. (2005) Microbial methane turnover in different marine habitats. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 6-17 Kusel, K., Dorsch, T., Acker, G., and Stackebrandt, E. (1999) Microbial reduction of Fe(III) in acidic sediments: Isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl. Environ. Microbiol., 65, 3633-3640 Land, L.S., and Milliken, K.L. (1981) Feldspar diagenesis in the Frio Formation, Brazoria County, Texas Gulf Coast, Geology, 9, 314-318. Lein, A.U. (2004) Authigenic carbonate formation in the Ocean. Lithology and Mineral Resources, 39, 1-30 Lelieveld, J., Crutzen, P.J., and Dentener, F.J. (1998) Changing concentrations, lifetime and climate forcing of atmospheric methane. Tellus, 50B, 128–150. Liu Y., Whitman W.B. (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea. Ann. N.Y. Acad. Sci., 1125, 171~189 Lloyd, K.G., Lapham, L.,Teske, A. (2006) An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl. Environ. Microbiol. 72, 7218–7230 Lombardi, J.E., Epp, M.A., and Chanton, J.P. (1997) Investigation of the methyl fluoride technique for determining rhizospheric methane oxidation. Biogeochemistry, 36, 153-172 Lovley, D.R., and Phillips, E.J.P. (1987b) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microbiol., 53, 1536-1540 Lovley, D.R., Holmes, D.E., Nevin, K.P. (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Advances in Microbial Physiology, 49, 219-286 Madigan, M.T., Martinko, J.M., and Parker, J. (2003) Brock’s Biology of Microorganisms. 10th Ed. Prentice Hall, NJ. Martens, C.S., Berner, R.A. (1974) Methane production in the interstitial waters of sulfate-depleted marine sediments. Science, 185, 1167–1169 Martinez, R.J., Mills, H.J., Story, S., Sobecky, P.A., (2006) Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ. Microbiol. 8, 1783–1796 McDonald, I.R., Bodrossy, L., Chen, Y., Murrell, J.C. (2008) Molecular Ecology Techniques for the Study of Aerobic Methanotrophs. Appl. Environ. Microbiol., 74, 1305-1315 Mer, J.E., and Roger, P. (2001) Production, oxidation, emission and consumption of methane by soil:A review. Eur. J. Soil Biol., 37, 25-50 Metha, T., Coppi, M.V., Childers, S.E., and Lovley, D.R. (2005) Outer Membrane c-Type Cytochromes Required for Fe(III) and Mn(IV) Oxide Reduction in Geobacter sulfurreducens, Appl. Environ. Microbiol., 71, 8634-8641 Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., et al. (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297, 1013–1015 Milkov, A.V. (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol., 167, 29-42 Moner, N.A., and Etiope, G.(2002) Carbon degassing from the lithosphere. Global and Planetary Change, 33, 185-203 Nauhaus, K., Treude, T., Boetius, A., Kruger, M.. (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I- and ANME-II-communities. Environ. Microbiol. 7, 98–106 Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A., Widdel, F. (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol., 9, 187–196 Niemann, H., Elvert, M., Hovland, M., Orcutt, B., Judd, A., et al. (2005) Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences 2, 335–351 Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D., DeLong, E.F. (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293, 484–487 Poulton, S.W., and Canfield, D.E. (2005) Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology, 214, 209-221 Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., et al. (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918–921 Rasmussen, R.A. and Khalil, M.A.K. (1984) Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and the interhemispheric gradient. J. Geophys. Res, 89, 11599–11605. Reeburgh, W.S. (1976) Methane consumption in Cariaco Trench waters and sediments. Earth Planet. Sci. Lett. 28:337–344 Reeburgh, W.S., (2003) Global methane biogeochemistry. In: Holland, H.D., Turekian, K.K. (eds.), The Atmosphere Treatise on Geochemistry, vol. 4. Elsevier, Oxford, UK, pp. 65–89. Reeburgh, W.S. (2007) Oceanic methane biogeochemistry. Chem. Rev., 107, 486-517. Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. (2005) Extracellular electron transfer via microbial nanowires, Nature, 435, 1098-1101 Schouten, S., Wakeham, S.G., Hopmans, E.C., Sinninghe, Damste, J.S. (2003) Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl. Environ. Microbiol. 69, 1680–1686. Schubert, C.J., Durisch-Kaiser, E., Holzner, C.P., Klauser, L.,Wehrli, B., et al. (2006) Methanotrophic microbial communities associated with bubble plumes above gas seeps in the Black Sea. Geochem. Geophys. Geosyst.7, 1–8 Shih, T.T., (1967) A survey of the active mud volcanoes in Taiwan and a study of their type and the character of the mud. Pet. Geol. Taiwan, 5, 259-310 Simpson, I.J., Chen, T.-Y., Blake, D.R., and Rowland, F.S. (2002) Implications of the recent fluctuations in the growth rate of tropospheric methane. Geophys. Res. Lett. 29, 117-1–117-4 Sulzberger, B., Suter, D., Siffert, C., Banwart, S., and Stumm, W. (1989) Dissolution of Fe (III) (hydr)oxides in natural water: Laboratory assessment on the kinetics controlled by surface coordination. Marine Chemistry, 28, 127-144 Sun, C.-H., Chang, S.-C., Kuo, C.-L., Wu, J.-C., and Shao, P.-H. (2010) Origins of Taiwan’s mud volcanoes: evidence from geochemistry. J Asian Earth Sci., 37, 105–110. Treude,, T., Knittel, K., Blumenberg, M., Seifert, R., Boetius, A. (2005) Subsurface microbial methanotrophic mats in the Black Sea. Appl. Environ. Microbiol,. 71, 6375–6378 Treude, T., Kruger, M., Boetius, A., Jorgensen, B.B. (2005) Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernforde Bay (German Baltic). Limnol. Oceanogr. 50, 1771–1186 Turick, C.E., Louis, S.T., and Caccavo, F. (2002) Melanin Production and use as a soluble electron Shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl. Environ. Microbiol., 68, 2436-2444 van der Nat, F.J.W.A., and Middelburg, J.J. (1998) Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquatic Botany, 61, 95-110 Valentine D.L., Reeburgh W.S. (2000) New perspectives on anaerobic methane oxidation. Environ. Microbiol., 2, 477–484 Wang, J.S., Logan, J.A., McElroy, M.B., Duncan, B.N., Megretskaia, I.A., and Yantosca, R.M. (2004) A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochemical Cycles, 18, GB3011 Wofsy, S.C. (1976) Interactions of CH4 and CO in the Earth’s atmosphere. Ann. Rev. Earth and Planet Sci. 4, 441–469. Yang, T.F., Chen, C-H., Tien, R.L. Song, S.R. and Liu, T.K. (2003a) Remnant magmatic activity in the Coastal Range of East Taiwan after arc-continent collision: fission-track data and 3He/4He ratio evidence, Radia. Meas., 36, 343-349. Yang, T.F., Chou, C.Y., Chen, C-H., Chyi, L.L. and Jiang, J.H. (2003b) Exhalation of radon and its carrier gases in SW Taiwan, Radia. Meas., 36, 425-429. Yang, T.F., Yeh, G.-H., Fu, C.-C., Wang, C,-C., Lan, T.-F., et al. (2004) Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environmental Geology, 46, 1003-1011. Yao, W.S., and Millero, F.J. (1996) Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Marine Chemistry, 52, 1-16 Yeh, G.H. (2003) Geochemistry and sources of mud-volcano fluids in Taiwan. MS thesis, Inst. Oceanography, National Taiwan Univ., (In Chinese with English abstract). Yeh, G.H., Yang, T.F., Chen, J.C., Chen, Y.G., Song, S.R. (2005) Fluid geochemistry of mud volcanoes in Taiwan. In: Martinelli, G., Panahi, B. (Eds.), Mud Volcanoes, Geodynamics and Seismicity. Springer, pp. 227–237. Zehnder A.J.B., Brock T.D. (1979) Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol., 137, 420–432 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63547 | - |
dc.description.abstract | 本研究旨在瞭解陸域泥火山系統中含鐵礦物的變化與 AOM 作用的關係。研究區域為台灣東部雷公火泥火山,前人研究已初步證實AOM 作用與鐵還原作用的關聯。本研究於不同的噴發泥池邊採取6根岩芯,長度自30 cm ~ 60 cm不等,萃取沈積物中3種不同型式的鐵含量,分別為可反應總鐵、碳酸鐵與易還原氧化鐵,並進行沈積物中總碳、有機碳與無機碳的含量分析。對比沈積物孔隙水中甲烷、鐵離子和溶解無機碳濃度,發現各岩芯分別在不同深度都有AOM的存在,並且鐵還原菌消耗的氧化鐵主要為易還原的氧化鐵。在岩芯中各深度的碳酸鐵含量大部分都較噴泥中的含量高,顯示在沈積物累積由淺層深埋至底層的過程中,曾經發生或正在進行鐵還原作用,總還原態鐵含量的證據也支持了岩芯中碳酸鐵的含量是經由長時間累積的結果,不過 AOM 與鐵還原作用合作或是鐵還原菌代謝有機碳的產物,均可促進碳酸鐵的沈澱。影響有機碳與無機碳含量的生地化作用很多,與鐵還原作用合作的AOM作用可能增加有機碳含量,但代謝有機碳鐵還原作用則會消耗有機碳,岩芯中有機碳與無機碳含量變化與AOM或其他生地化反應的關係仍有待進一步釐清。 | zh_TW |
dc.description.abstract | Anaerobic oxidation of methane (AOM) is widely performed by the cooperation between anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria in marine sediments. Due to the lack of sulfate, AOM may carry out by ANMEs and iron reducers (IRs) in terrestrial mud volcanoes. Both mechanisms could enhance carbonate precipitates and also regulate iron cycling.
The objective of this study is to understand the relationship between AOM and the iron-bearing minerals in the Lei-Gong-Huo mud volcano in eastern Taiwan. Six cores were retrieved beside different eruptive pools. The content of three different types of iron (total reactive iron, easily reducible iron and carbonate iron), total organic carbon (TOC) and total inorganic carbon (TIC) were analyzed. The iron-methane transition zone (IMTZ) can be reconginzed in all cores, inferring the cooperation between ANMEs and IRs. Iron carbonate contents and/or fractions in the IMTZ are generally higher than that of adjacent bubbling fluids. Apparently, iron-dependent AOM is channeled into siderite (FeCO3) precipitates. Siderite was widely accumulated in whole cores, suggesting iron reduction does not only perform in certain depth recently. However, both iron-dependent AOM and organotrophic iron reduction could enhance siderite precipitatation. Many biogeochemical processes could change the TOC and TIC contents. It seems that iron-dependent AOM could increase the TOC concent, but organotrophic iron reduction may consume TOC. The correlation between TOC/TIC content and AOM or other biogeochemical processes need to be further evaluated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:13:49Z (GMT). No. of bitstreams: 1 ntu-101-R95241312-1.pdf: 4942349 bytes, checksum: e18056d3328cb5a05755574a7a62dbe3 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 i 誌謝 ii 摘要 iii ABSTRACT iv 第一章 緒論 1 1.1 前言 1 1.2 全球甲烷循環 1 1.3 微生物甲烷代謝作用. 2 1.3.1 產甲烷菌(methanogenic archaea)2 1.3.2 好氧型甲烷氧化菌(aerobic methanotrphic bacteria) 3 1.3.3 厭氧型甲烷氧化菌(Anaerobic methanotrophic archaea,ANME) 4 1.4 鐵還原作用 8 1.5 泥火山 9 1.6 研究目的 12 第二章 採樣與實驗方法 15 2.1 採樣地點 15 2.2 採樣方法 15 2.3 沈積物化學分析取 16 2.3.1 鐵物種的萃取 16 2.3.1.1 含鐵礦物的配製 16 2.3.1.2 鐵物種的萃取方法 16 2.3.1.3 鐵含量分析 20 2.3.2 總碳、有機碳與無機碳的分析 21 2.4 儀器誤差 21 第三章 實驗結果 23 3.1 總鐵含量分析結果 23 3.2 易還原氧化鐵含量分析結果 23 3.3 碳酸鐵含量分析結果 25 3.4 碳酸鐵來自易還原氧化鐵中的比例隨深度變化 28 3.5 各岩芯中含鐵礦物的比例 28 3.6 有機碳含量分析結果 33 3.7 無機碳含量分析結果 33 第四章 討論 37 4.1 水化學的濃度變化與進行中的AOM 作用 37 4.3 碳酸鐵含量與比例增加與AOM 作用的關係 38 4.4 有機碳含量變化與 AOM 關係 39 4.5 岩芯中總還原態鐵含量與AOM 作用的關係 40 第五章 結論 45 參考文獻 46 附錄 53 圖目錄 圖1-1、FE3+ 與 FE2+ 轉換,參與的分子與反應。 8 圖1-2、臺灣東部雷公火泥火山噴泥口與岩芯中水化學隨深度變化圖。 13 圖1-3、臺灣東部雷公火泥火山微生物群落結構與菌群豐度隨深度變化圖。 14 圖2-1、臺灣東部雷公火泥火山全景圖。 18 圖2-2、雷公火泥火山採樣位置圖。 19 圖2–3:鐵物種萃取示意圖 20 圖2-4、元素分析儀 22 圖3-1、各岩芯與噴泥口的總鐵含量隨深度變化圖。 24 圖3-2、各岩芯與噴泥口的易還原氧化鐵含量隨深度變化圖。 26 圖3-3、各岩芯與噴泥口的碳酸鐵含量隨深度變化圖。 27 圖3-4、各岩芯之碳酸鐵所佔比例隨深度的變化。 29 圖3-5、各岩芯含鐵礦物柱狀圖 30 圖3-6 各岩芯與噴泥口的有機碳含量隨深度變化圖。 34 圖3-7 各岩芯與噴泥口的無機碳含量隨深度變化圖。 35 圖4-1、各岩芯中AOM 存在的深度範圍。 42 表目錄 表2-1、各岩芯的長度與噴泥口化學資料 15 表3-1、各岩芯與噴泥口的總鐵含量 32 表3-2、各岩芯與噴泥口的易還原氧化鐵含量 32 表3-3、各岩芯與噴泥口的碳酸鐵含量 32 表3-4、各岩芯與噴口的有機碳含量 36 表3-5、各岩芯與噴口的無機碳含量 36 | |
dc.language.iso | zh-TW | |
dc.title | 臺灣東部雷公火泥火山中厭氧型甲烷氧化作用與含鐵礦物之關係 | zh_TW |
dc.title | The relationship between anaerobic oxidation of methane and iron minerals in the Lei-Gong-Huo mud volcano of eastern Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林立虹(Li-Hung Lin),蘇志杰(Chih-Chieh Su),李孟陽(Meng-Yang Lee) | |
dc.subject.keyword | 雷公火泥火山,甲烷,厭氧型甲烷氧化作用,鐵還原作用,含鐵礦物, | zh_TW |
dc.subject.keyword | Lei-Gong-Huo mud volcano,methane,anaerobic oxidation of methane,iron reduction,iron-bearing minerals, | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。