Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63546
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳音(Chia Yin Lee)
dc.contributor.authorMing-Hsu Liuen
dc.contributor.author劉明煦zh_TW
dc.date.accessioned2021-06-16T17:13:49Z-
dc.date.available2017-08-01
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citation王韻婷 (2000). 高分子生物塑膠生產菌之分離,特性分析及高分子合成基
因之選殖. 國立台灣大學農業化學系碩士論文
黃延嘉 (2005). 篩選特殊單體組成之聚羥基烷酸酯生產菌並分析其PH合
成酶基質專一性. 國立台灣大學農業化學系碩士論文
沈昱彣 (2011). Pseudomonas sp. TO7由混合碳源生產具官能基之聚羥基烷
酸酯. 國立台灣大學農業化學系碩士論文
Abad S, Turon X. (2012). Valorization of biodiesel derived glycerol as a
carbon source to obtain added-value metabolites: Focus on polyunsaturated
fatty acids. Biotechnology Advances 30: 733-41
Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, et al., (2008).
Jatropha bio-diesel production and use. Biomass and Bioenergy 32: 1063-84
Agus J, Kahar P, Abe H, Doi Y, Tsuge T. (2006). Molecular weight
characterization of poly[(R)-3-hydroxybutyrate] synthesized by genetically
engineered strains of Escherichia coli. Polymer Degradation and Stability 91:
1138-46
Agus J, Kahar P, Hyakutake M, Tomizawa S, Abe H, et al., (2010). Unusual
change in molecular weight of polyhydroxyalkanoate (PHA) during cultivation
of PHA-accumulating Escherichia coli. Polymer Degradation and Stability 95:
2250-54
Akaraonye E, Keshavarz T, Roy I. (2010). Production of
polyhydroxyalkanoates: the future green materials of choice. Journal of
Chemical Technology & Biotechnology 85: 732-43
Aldor IS, Keasling JD. (2003). Process design for microbial plastic factories:
metabolic engineering of polyhydroxyalkanoates. Current Opinion in
Biotechnology 14: 475-83
A. RYWINBSKA et al., (2009). Biosynthesis of Citric Acid from Glycerol by
Acetate Mutants of Yarrowia lipolytica in Fed-Batch Fermentation.
Food Technology and Biotechnology 47:1–6
Andres Quintero J, Ruth Felix E, Eduardo Rincón L, Crisspín M,
Fernandez Baca J, et al., (2012). Social and techno-economical analysis of
biodiesel production in Peru. Energy Policy 43: 427-35
Asad ur R, Wijesekara R.G S, Nomura N, Sato S, Matsumura M. (2008).
Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for
growth and 1,3-propanediol production by Clostridium butyricum. Journal of
Chemical Technology & Biotechnology 83: 1072-80
Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH,
Mekhilef S. (2012). A comprehensive review on biodiesel as an alternative
energy resource and its characteristics. Renewable and Sustainable Energy
Reviews 16:2070-93
Bouaid A, El Boulifi N, Martinez M, Aracil J. (2012). Optimization of a
two-step process for biodiesel production from Jatropha curcas crude oil.
International Journal of Low-Carbon Technologies
Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR.
(2009). Poly(3-hydroxybutyrate) production by Cupriavidus necator using
waste glycerol. Process Biochemistry 44: 509-15
Chakrabarti MH, Ali M, Usmani JN, Khan NA, Hasan DuB, et al., (2012).
Status of biodiesel research and development in Pakistan. Renewable and
Sustainable Energy Reviews 16: 4396-405
Chatzifragkou A, Dietz D, Komaitis M, Zeng A-P, Papanikolaou S. (2010).
Effect of biodiesel-derived waste glycerol impurities on biomass and
1,3-propanediol production of Clostridium butyricum VPI 1718.
Biotechnology and Bioengineering 107: 76-84
Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki A, Nychas G-J,
Zeng A-P. (2011). Production of 1,3-propanediol by Clostridium
butyricum growing on biodiesel-derived crude glycerol through a non-sterilized
fermentation process. Applied Microbiology and Biotechnology 91: 101-12
Chi Z, Pyle D, Wen Z, Frear C, Chen S. (2007). A laboratory study of
producing docosahexaenoic acid from biodiesel-waste glycerol by
microalgal fermentation. Process Biochemistry 42: 1537-45
Choi W, Hartono M, Chan W, Yeo S. (2011). Ethanol production from
biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens.
Applied Microbiology and Biotechnology 89: 1255-64
Christophe G, Kumar V, Nouaille R, Gaudet G, Fontanille P, et al., (2012).
Recent developments in microbial oils production: a possible alternative to
vegetable oils for biodiesel without competition with human food? Brazilian
Archives of Biology and Technology 55: 29-46
Ding C, Cheng B, Wu Q. (2010). DSC analysis of isothermally
melt-crystallized bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
films. Journal of Thermal Analysis and Calorimetry 103: 1001-06
Dobroth ZT, Hu S, Coats ER, McDonald AG. (2011). Polyhydroxybutyrate
synthesis on biodiesel wastewater using mixed microbial consortia.
Bioresource technology 102: 3352-59
Guo W, Song C, Kong M, Geng W, Wang Y, Wang S. (2011). Simultaneous
production and characterization of medium-chain-length
polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas
mendocina NK-01. Applied Microbiology and Biotechnology 92: 791-801
Halim R, Danquah MK, Webley PA. (2012). Extraction of oil from
microalgae for biodiesel production: A review. Biotechnology Advances 30:
709-32
Hiremath A, Kannabiran M, Rangaswamy V. (2011). 1,3-Propanediol production from crude glycerol from jatropha biodiesel process. New Biotechnology 28: 19-23
Ibrahim MHA, Steinbüchel A. (2009). Poly(3-Hydroxybutyrate) Production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Applied and Environmental Microbiology 75: 6222-31
Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. (2005). Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of Bioscience and Bioengineering 100: 260-65
Ito T, Sakurai Y, Kakuta Y, Sugano M, Hirano K. (2012). Biodiesel
production from waste animal fats using pyrolysis method. Fuel Processing
Technology 94: 47-52
Janaun J, Ellis N. (2010). Perspectives on biodiesel as a sustainable fuel.
Renewable and Sustainable Energy Reviews 14: 1312-20
Kansiz M, Billman-Jacobe H, McNaughton D. (2000). Quantitative
determination of the biodegradable polymer poly(β-hydroxybutyrate) in a
recombinant Escherichia coli strain by use of mid-infrared spectroscopy and
multivariative statistics. Applied and Environmental Microbiology 66: 3415-20
Kulkarni MG, Dalai AK. (2006). Waste cooking oil-An Economical Source
for Biodiesel:  A Review. Industrial & Engineering Chemistry Research 45:
2901-13
Kumar S, Chaube A, Jain SK. (2012). Sustainability issues for promotion of
Jatropha biodiesel in Indian scenario: A review. Renewable and Sustainable
Energy Reviews 16: 1089-98
Lee SH, Kim JH, Mishra D, Ni YY, Rhee YH. (2011). Production of
medium-chain-length polyhydroxyalkanoates by activated sludge enriched
under periodic feeding with nonanoic acid. Bioresource technology 102:
6159-66
Leung DYC, Wu X, Leung MKH. (2010). A review on biodiesel production
using catalyzed transesterification. Applied Energy 87: 1083-95
Li M, Li ZQ, Xu J, Wei DS, Zhu HW, Li D. 2010. Thermal property,
morphology, mechanical and rheological properties of a modified
bio-polymers prepared by blending
poly(3-hydrobutyrate-co-4-hydrobutyrate) with Chain Extenders. Advanced
Materials Research 152-153: 924-30
Mata TM, Martins AA, Caetano NS. (2010). Microalgae for biodiesel
production and other applications: A review. Renewable and Sustainable
Energy Reviews 14: 217-32
Metzger JO. (2009). Fats and oils as renewable feedstock for chemistry.
European Journal of Lipid Science and Technology 111: 865-76
Moralejo-Garate H, Mar'atusalihat E, Kleerebezem R, van Loosdrecht
MC. 2011. Microbial community engineering for biopolymer production from
glycerol. Applied Microbiology and Biotechnology 92: 631-9
Mothes G, Schnorpfeil C, Ackermann JU. (2007). Production of PHB from
Crude Glycerol. Engineering in Life Sciences 7: 475-79
Mu Y, Teng H, Zhang D-J, Wang W, Xiu Z-L. (2006). Microbial production
of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol
from biodiesel preparations. Biotechnology letters 28: 1755-59
Nair MB, Kretlow JD, Mikos AG, Kasper FK. (2011). Infection and tissue
engineering in segmental bone defects--a mini review. Current Opinion in
Biotechnology 22: 721-5
Nomura CT, Taguchi S. (2007). PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Appl Microbiol Biotechnol 73: 969-79
Oh B-R, Seo J-W, Heo S-Y, Hong W-K, Luo LH, et al., (2011). Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. Bioresource technology 102: 3918-22
Papanikolaou S, Aggelis G. (2009). Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technology 21: 83-87
Penloglou G, Kretza E, Chatzidoukas C, Parouti S, Kiparissides C. (2012).
On the control of molecular weight distribution of polyhydroxybutyrate in
Azohydromonas lata cultures. Biochemical Engineering Journal 62: 39-47
Rai R, Keshavarz T, Roether JA, Boccaccini AR, Roy I. (2011). Medium
chain length polyhydroxyalkanoates, promising new biomedical materials for
the future. Materials Science and Engineering: R: Reports 72: 29-47
Sujatha Kabilan, Mahalakshmi Ayyasamy, Sridhar Jayavel, and
Gunasekaran Paramasamy (2012). Pseudomonas sp. as a source of medium
chain length polyhydroxyalkanoates for controlled drug delivery: perspective.
International Journal of Microbiology 2012
Saito T, Tomita K, Juni K, Ooba K. 1991. In vivo and in vitro degradation of
poly(3-hydroxybutyrate) in pat. Biomaterials 12: 309-12
Satoh Y, Tajima K, Nakamoto S, Xuerong H, Matsushima T, et al., (2011).
Isolation of a thermotolerant bacterium producing medium-chain-length
polyhydroxyalkanoate. Journal of Applied Microbiology 111: 811-17
Schawe R, Fetzer I, Tonniges A, Hartig C, Geyer W, et al., (2011).
Evaluation of FT-IR spectroscopy as a tool to quantify bacteria in binary mixed
cultures. Journal of Microbiological Methods 86: 182-7
Shahid EM, Jamal Y. 2011. Production of biodiesel: A technical review.
Renewable and Sustainable Energy Reviews 15: 4732-45
Shen L, Worrell E, Patel M. (2010). Present and future development in
plastics from biomass. Biofuels, Bioproducts and Biorefining 4: 25-40
Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S. (2010).
Isolation of promising bacterial strains from soil and marine environment for
polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel
byproduct. International Journal of Biological Macromolecules 47: 283-87
Singh SP, Singh D. (2010). Biodiesel production through the use of different
sources and characterization of oils and their esters as the substitute of diesel: A
review. Renewable and Sustainable Energy Reviews 14: 200-16
S.V. Kamzolova et al., (2011). Citric Acid Production by Yeast grown on
Glycerol-Containing Waste from Biodiesel Industry. Food Technology and
Biotechnology 49:65–74
Tanadchangsaeng N, Yu J. (2012). Microbial synthesis of polyhydroxybutyrate from glycerol: Gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnology and Bioengineering: n/a-n/a
Teeka J, Imai T, Reungsang A, Cheng X, Yuliani E, et al., (2012).
Characterization of polyhydroxyalkanoates (PHAs) biosynthesis by isolated
Novosphingobium sp. THA_AIK7 using crude glycerol. Journal of Industrial
Microbiology & Biotechnology 39: 749-58
Tomizawa S, Hyakutake M, Saito Y, Agus J, Mizuno K, et al., (2011).
Molecular weight change of polyhydroxyalkanoate (PHA) caused by the PhaC
subunit of PHA synthase from Bacillus cereus YB-4 in recombinant
Escherichia coli. Biomacromolecules 12: 2660-6
Valentin HE, Berger PA, Gruys KJ, Filomena de Andrade Rodrigues M,
Steinbüchel A, et al., (1999). Biosynthesis and Characterization of
Poly(3-hydroxy-4-pentenoic acid). Macromolecules 32: 7389-95

Volova T, Shishatskaya E, Sevastianov V, Efremov S, Mogilnaya O. (2003).
Results of biomedical investigations of PHB and PHB/PHV fibers. Biochemical
Engineering Journal 16: 125-33
Walimwipi H, Yamba FD, Wörgetter M, Rathbauer J, Bacovsky D. (2012).
Biodiesel production in Africa bioenergy for sustainable development in Africa,
ed. R Janssen, D Rutz, pp. 93-102: Springer Netherlands
Wang Q, Tappel RC, Zhu C, Nomura CT. 2012. Development of a new
strategy for production of medium-chain-length polyhydroxyalkanoates by
recombinant Escherichia coli via inexpensive non-fatty acid feedstocks.
Applied and Environmental Microbiology 78: 519-27
Woolnough CA, Yee LH, Charlton T, Foster LJR. (2009). Environmental
degradation and biofouling of of green plastics including short and medium
chain length polyhydroxyalkanoates. Polymer International 59: 658–667
Wu H-A, Sheu D-S, Lee C-Y. (2003). Rapid differentiation between
short-chain-length and medium-chain-length
polyhydroxyalkanoate-accumulating bacteria with spectrofluorometry. Journal
of Microbiological Methods 53: 131-35
Xu C, Qiu Z. (2011). Crystallization behavior and thermal property of
biodegradable poly(3-hydroxybutyrate)/multi-walled carbon nanotubes
nanocomposite. Polymers for Advanced Technologies 22: 538-44
Yang C-Y, Fang Z, Li B, Long Y-f. (2012a). Review and prospects of
Jatropha biodiesel industry in China. Renewable and Sustainable Energy
Reviews 16: 2178-90
Yang F, Hanna MA, Sun R. (2012b). Value-added uses for crude glycerol--a
byproduct of biodiesel production. Biotechnology for biofuels 5: 13
Yusuf NNAN, Kamarudin SK, Yaakub Z. (2011). Overview on the current
trends in biodiesel production. Energy Conversion and Management 52:
2741-51
Yu G-e, Marchessault RH. (2000). Characterization of low molecular
weight poly(β-hydroxybutyrate)s from alkaline and acid hydrolysis.
Polymer 41: 1087-98
Zinn M. (2010). Biosynthesis of medium-chain-length
poly[hydroxy-3-hydroxyalkanoates] Plastics from Bacteria
Microbiology Monographs Volume 14, 2010, pp 213-236
Wang H-h, Zhou X-r, Liu Q, Chen G-Q. (2011). Biosynthesis of
polyhydroxyalkanoate homopolymers by Pseudomonas
putida. Applied Microbiology and Biotechnology 89: 1497-507
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63546-
dc.description.abstract本研究利用六株格蘭氏陰性細菌Duganella zoogloeoides TF1-1、Pseudomonas mosselii TO7、Pseudomonas nitroreducens PO6、Pseudomonas citronellolis PO21、Duganella zoogloeoides TS18及Paracoccus versutus GG45培養在含生質柴油副產物的礦物鹽培養基中48小時,觀察聚羥基烷酸酯的累積情形。其中以TF1-1及TO7兩株菌的PHA含量最高,分別為55 mol %及48 mol %。利用氣相層析分析聚合物單體組成,TF1-1所生成的PHA具有3-HB單體(100 mol%),TO7生合成的PHA單體組成以3-HO (83 mol %)及3-HB(15 mol %)為主。以1H 及13C NMR解析聚合物結構,證實TF1-1所生合成的聚合物為PHB,TO7生合成的PHA,具有P(3HB)及P(3HO)的組成,與氣相層析分析結果一致。另外以傅立葉轉換紅外線光譜儀鑑定此兩株菌生產的PHA之官能基,證實具有PHA的C=O官能基訊號、C-O-C伸張模式的訊號,CH、CH2及CH3皆有吸收鋒出現。凝膠滲透層析儀測定TF1-1及TO7的PHA之廣分佈係數分別是1.30及1.38。熱性質分析結果顯示TO7及TF1-1的PHA產物裂解溫度分別為281.52oC及222.43oC;微差熱掃描分析結果顯示TF1-1的PHA產物比一般短鏈PHA的結晶度為低,具有較廣之應用性。為研究培養溫度及培養時間對於菌體內PHA分子量變化的影響,本研究以TO7為研究對象,以辛酸鈉為單一碳源觀察,結果顯示廣分佈係數無顯著的變化趨勢,但分子量分佈情形在高溫下培養有變高的趨勢,證實培養溫度對於分子量變化有影響。本研究結果顯示TF1-1及TO7兩株菌可以利用生質柴油副產物為碳源生成聚羥基烷酸酯,有較低的廣分佈係數,具備工業發展的潛力。zh_TW
dc.description.abstractThe six gram negative bacteria strains, Duganella zoogloeoides TF1-1, Pseudomonas mosselii TO7, Pseudomonas nitroreducens PO6, Pseudomonas citronellolisPO21, Duganella zoogloeoides TS18 and Paracoccus versutus GG45 were cultured in the MS medium containing biodiesel by-product to accumulate PHA. Among them, strains of TF1-1 and TO7 have the higher PHA content which were 55 mol % and 48 mol % , respectively. Gas chromatography revealed the monomer composition of polymer from TF1-1 utilizing BDF by-product was completely 3-HB (100 mol%), whereas the monomer unit of TO7 is primarily 3-HO (83 mol %) and 3-HB (15 mol %). NMR displayed the pattern of polymer produced by TF1-1 identical to the spectra of PHB. NMR spectrum of polymer produced by TO7 corroborates the composition and the expected structure analyzed by GC analysis. FTIR spectra show the absorption band CH , CH2 , CH3, ester bond and C-O-C band stretching. GPC analysis showed PDI values of the polymer produced by TF1-1 and TO7 were 1.3 and 1.38. The culture temperature and time have no predominant effects on the PDI value change. But molecular weight distribution curve gradually changed to a bimodal after 44 h at 35℃, suggesting the cultivation temperature is a factor involved in molecular weight change. This study showed the TF1-1 and TO7 will be potential candidates for industrial production of PHA with low PDI value and lower crystallinity from inexpensive waste substrate.  en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:13:49Z (GMT). No. of bitstreams: 1
ntu-101-R97623023-1.pdf: 1570775 bytes, checksum: 104994fc518cc0866c720a25ab44480d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 i
中文摘要 iii
Abstract iv
目錄…….. v
表次…… viii
圖次…… ix
附錄圖次 x
縮寫表 xi
壹、 前言 1
一、PHA物理性質和化學性質 1
1. PHA的結構 1
2. PHA的生物可分解性及生物可相容性 1
3. PHA的種類 2
4. PHA的分子量 3
5. PHA合成酶 3
6. 短鏈 PHA生合成途徑 3
7. 中長鏈PHA生合成途徑 4
二、PHA的應用 4
三、生質概念的興起 5
1. 生質材料的發展現況 5
2. 利用廉價的碳源生產PHA 6
四、生質柴油的介紹 7
1. 生質柴油的發展現況 7
2. 生質柴油原料 8
3. 生質柴油的生產技術 9
4. 生質柴油的未來展望 9
五、生質柴油副產物的加值利用 10
1. 生質柴油副產物背景介紹 10
2. 生質柴油副產物加值為動物飼料 10
3. 生質柴油副產物加值成為1,3-propanediol 10
4. 生質柴油副產物加值成為citric acid 11
5. 生質柴油副產物加值成為氫氣及小分子燃料 11
6. 生質柴油副產物加值成為聚羥基烷酸酯 12
7. 生質柴油副產物加值成為Docosahexaenoic acid 12
六、研究目的 12
貳、 實驗材料與方法 14
一、實驗材料 14
1. 實驗菌株 14
2. 培養基 14
3. 碳源 15
4. 藥品與試劑 15
5. 儀器 16
二、實驗方法 17
1. 初步篩選PHA累積情形 17
2. 螢光光譜儀鑑定PHA累積 18
3. PHA萃取 (PHA extraction) 18
4. 菌體乾重 (Biomass)、PHA含量 (PHA content)、PHA產率 (PHA productivity)測定 19
5. 超導核磁共振 (Nuclear Magnetic Resonance, NMR) 19
6. 控溫式傅立葉轉換紅外線光譜儀 (Fourier transform infrared resonance, FTIR) 19
7. 氣相層析儀 (Gas Chromatography, GC) 19
8. 熱重分析儀 (Thermogravimetric analysis, TGA) 21
9. 微差熱掃描分析儀 (Differential Scanning calorimetry, DSC) 21
10. 凝膠滲透層析儀 (Gel Permeation Chromatography, GPC) 21
11. 廣分佈係數(Polydispersity index, PDI)調控實驗 22
參、實驗結果 23
一、生質柴油副產物及大豆油利用率佳之PHA累積菌株 23
二、甘油及脂肪酸鈉利用率佳之PHA累積菌株 23
三、利用氣相層析儀分析聚合物的單體組成 24
四、生質柴油副產物為單一碳源的最適化培養條件探討 25
五、核磁共振及傅立葉轉換紅外線光譜儀解析聚合物結構 26
六、以生質柴油副產物當作碳源生成PHA之熱性質及分子量分析 27
七、 Pseudomonas mosselii TO7以辛酸鈉為單一碳源下不同溫度及時間培養所產生之聚羥基烷酸酯的廣分佈係數的影響 27
肆、討論 29
一、TF1-1以生質柴油副產物為碳源之菌體生長及PHA代謝途徑 29
二、TO7以生質柴油副產物為碳源之菌體生長及PHA代謝途徑 30
三、培養溫度及時間對於PHA分子量的影響 31
伍、結論 33
陸、參考文獻 34
柒、表…….. 42
捌、圖………… 56
玖、附錄圖 73
dc.language.isozh-TW
dc.subject聚羥基烷酸酯zh_TW
dc.subjectpolyhydroxyalkanoatesen
dc.title利用生質柴油副產物生產聚羥基烷酸酯及其物性分析zh_TW
dc.titleProduction and characterization of polyhydroxyalkanoates utilizing biodiesel by-producten
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林榮流,劉?德
dc.subject.keyword聚羥基烷酸酯,zh_TW
dc.subject.keywordpolyhydroxyalkanoates,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2012-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved