請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63529
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李心予(Hsinyu Lee) | |
dc.contributor.author | Yueh-Chien Lin | en |
dc.contributor.author | 林岳謙 | zh_TW |
dc.date.accessioned | 2021-06-16T17:13:38Z | - |
dc.date.available | 2014-08-22 | |
dc.date.copyright | 2012-08-22 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-20 | |
dc.identifier.citation | 1 Greenlee, R. T., Murray, T., Bolden, S. & Wingo, P. A. Cancer statistics, 2000. CA: a cancer journal for clinicians 50, 7-33 (2000).
2 Denmeade, S. R., Lin, X. S. & Isaacs, J. T. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. The Prostate 28, 251-265, doi:10.1002/(SICI)1097-0045(199604)28:4<251::AID-PROS6>3.0.CO;2-G (1996). 3 Williams, R. H. & Wilson, J. D. Williams textbook of endocrinology. 9th edn, (Saunders, 1998). 4 Quigley, C. A. et al. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocrine reviews 16, 271-321 (1995). 5 Brinkmann, A. O. et al. Mechanisms of androgen receptor activation and function. The Journal of steroid biochemistry and molecular biology 69, 307-313 (1999). 6 Nazareth, L. V. & Weigel, N. L. Activation of the human androgen receptor through a protein kinase A signaling pathway. The Journal of biological chemistry 271, 19900-19907 (1996). 7 McKenna, N. J., Lanz, R. B. & O'Malley, B. W. Nuclear receptor coregulators: cellular and molecular biology. Endocrine reviews 20, 321-344 (1999). 8 Howell, S. B. DNA Microarrays for Analysis of Gene Expression. Molecular urology 3, 295-300 (1999). 9 Huggins, C. Endocrine-induced regression of cancers. Cancer Res 27, 1925-1930 (1967). 10 Xie, Y., Gibbs, T. C. & Meier, K. E. Lysophosphatidic acid as an autocrine and paracrine mediator. Biochimica et biophysica acta 1582, 270-281 (2002). 11 Tokumura, A. Physiological and pathophysiological roles of lysophosphatidic acids produced by secretory lysophospholipase D in body fluids. Biochimica et biophysica acta 1582, 18-25 (2002). 12 Tokumura, A. et al. Increased formation of lysophosphatidic acids by lysophospholipase D in serum of hypercholesterolemic rabbits. Journal of lipid research 43, 307-315 (2002). 13 Tokumura, A. et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. The Journal of biological chemistry 277, 39436-39442, doi:10.1074/jbc.M205623200 (2002). 14 Tokumura, A. et al. Lack of significant differences in the corrected activity of lysophospholipase D, producer of phospholipid mediator lysophosphatidic acid, in incubated serum from women with and without ovarian tumors. Cancer 94, 141-151 (2002). 15 Choi, J. W. et al. LPA receptors: subtypes and biological actions. Annual review of pharmacology and toxicology 50, 157-186, doi:10.1146/annurev.pharmtox.010909.105753 (2010). 16 Noguchi, K., Herr, D., Mutoh, T. & Chun, J. Lysophosphatidic acid (LPA) and its receptors. Current opinion in pharmacology 9, 15-23, doi:10.1016/j.coph.2008.11.010 (2009). 17 Hao, F. et al. Lysophosphatidic acid induces prostate cancer PC3 cell migration via activation of LPA(1), p42 and p38 alpha. Bba-Mol Cell Biol L 1771, 883-892, doi:DOI 10.1016/j.bbalip.2007.04.010 (2007). 18 Andela, V. B. Re S. S. Virtanen et al., Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway. Cancer Res 2002;62 : 2708-14 - Re K. Sawada et al., Alendronate inhabits lysophosphatidic acid-induced migration of human ovarian cancer cells by attenuating the activation of Rho. Cancer Res 2002;62 : 6015-20. Cancer Res 64, 2934-2935 (2004). 19 Hwang, Y. S., Hodge, J. C., Sivapurapu, N. & Lindholm, P. F. Lysophosphatidic acid stimulates PC-3 prostate cancer cell matrigel invasion through activation of RhoA and NF-kappa B activity. Mol Carcinogen 45, 518-529, doi:Doi 10.1002/Mc.20183 (2006). 20 Raj, G. V., Sekula, J. A., Guo, R., Madden, J. F. & Daaka, Y. Lysophosphatidic acid promotes survival of androgen-insensitive prostate cancer PC3 cells via activation of NF-kappaB. The Prostate 61, 105-113, doi:10.1002/pros.20083 (2004). 21 Qi, C. et al. Lysophosphatidic acid stimulates phospholipase D activity and cell proliferation in PC-3 human prostate cancer cells. Journal of cellular physiology 174, 261-272, doi:10.1002/(SICI)1097-4652(199802)174:2<261::AID-JCP13>3.0.CO;2-F (1998). 22 Folkman, J. A new link in ovarian cancer angiogenesis: lysophosphatidic acid and vascular endothelial growth factor expression. Journal of the National Cancer Institute 93, 734-735 (2001). 23 Hu, Y. L. et al. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. Journal of the National Cancer Institute 93, 762-768 (2001). 24 Byrne, A. M., Bouchier-Hayes, D. J. & Harmey, J. H. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). Journal of cellular and molecular medicine 9, 777-794 (2005). 25 Arya, M. et al. The metastatic cascade in prostate cancer. Surgical oncology 15, 117-128, doi:10.1016/j.suronc.2006.10.002 (2006). 26 Su, J. L. et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. British journal of cancer 96, 541-545, doi:10.1038/sj.bjc.6603487 (2007). 27 Zeng, Y. P. et al. Expression of vascular endothelial growth factor receptor-3 by lymphatic endothelial cells is associated with lymph node metastasis in prostate cancer. Clin Cancer Res 10, 5137-5144 (2004). 28 Zeng, Y., Opeskin, K., Horvath, L. G., Sutherland, R. L. & Williams, E. D. Lymphatic vessel density and lymph node metastasis in prostate cancer. The Prostate 65, 222-230, doi:10.1002/pros.20288 (2005). 29 Brakenhielm, E. et al. Modulating metastasis by a lymphangiogenic switch in prostate cancer. International journal of cancer. Journal international du cancer 121, 2153-2161, doi:10.1002/ijc.22900 (2007). 30 Burton, J. B. et al. Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res 68, 7828-7837, doi:10.1158/0008-5472.CAN-08-1488 (2008). 31 Enholm, B. et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14, 2475-2483 (1997). 32 Lee, S. J. et al. LPA1 is essential for lymphatic vessel development in zebrafish. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22, 3706-3715, doi:10.1096/fj.08-106088 (2008). 33 Lin, C. I. et al. Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cellular signalling 20, 1804-1814, doi:10.1016/j.cellsig.2008.06.008 (2008). 34 Lin, C. I. et al. Lysophosphatidic acid up-regulates vascular endothelial growth factor-C and lymphatic marker expressions in human endothelial cells. Cellular and molecular life sciences : CMLS 65, 2740-2751, doi:10.1007/s00018-008-8314-9 (2008). 35 McCord, J. M. & Fridovich, I. The reduction of cytochrome c by milk xanthine oxidase. The Journal of biological chemistry 243, 5753-5760 (1968). 36 Babior, B. M., Kipnes, R. S. & Curnutte, J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. The Journal of clinical investigation 52, 741-744, doi:10.1172/JCI107236 (1973). 37 Hancock, J. T., Desikan, R. & Neill, S. J. Role of reactive oxygen species in cell signalling pathways. Biochemical Society transactions 29, 345-350 (2001). 38 Bokoch, G. M. & Diebold, B. A. Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100, 2692-2696, doi:10.1182/blood-2002-04-1149 (2002). 39 Giles, G. I. The redox regulation of thiol dependent signaling pathways in cancer. Current pharmaceutical design 12, 4427-4443 (2006). 40 Laurent, A. et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65, 948-956 (2005). 41 Rodrigues, M. S., Reddy, M. M. & Sattler, M. Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxidants & redox signaling 10, 1813-1848, doi:10.1089/ars.2008.2071 (2008). 42 Toyokuni, S., Okamoto, K., Yodoi, J. & Hiai, H. Persistent oxidative stress in cancer. FEBS letters 358, 1-3 (1995). 43 Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51, 794-798 (1991). 44 Kumar, B., Koul, S., Khandrika, L., Meacham, R. B. & Koul, H. K. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68, 1777-1785, doi:10.1158/0008-5472.CAN-07-5259 (2008). 45 Lin, C. E. et al. Lysophosphatidic Acid Enhances Vascular Endothelial Growth Factor-C Expression in Human Prostate Cancer PC-3 Cells. PloS one (2012). 46 Rinaldo, F., Li, J., Wang, E., Muders, M. & Datta, K. RalA regulates vascular endothelial growth factor-C (VEGF-C) synthesis in prostate cancer cells during androgen ablation. Oncogene 26, 1731-1738, doi:10.1038/sj.onc.1209971 (2007). 47 Mendiratta, P. et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 27, 2022-2029, doi:10.1200/JCO.2008.17.2882 (2009). 48 Marcelli, M. et al. Androgen receptor mutations in prostate cancer. Cancer Res 60, 944-949 (2000). 49 Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57, 314-319 (1997). 50 Taplin, M. E. et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59, 2511-2515 (1999). 51 Tilley, W. D., Buchanan, G., Hickey, T. E. & Bentel, J. M. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res 2, 277-285 (1996). 52 Taplin, M. E. et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. The New England journal of medicine 332, 1393-1398, doi:10.1056/NEJM199505253322101 (1995). 53 Culig, Z. et al. Expression, structure, and function of androgen receptor in advanced prostatic carcinoma. The Prostate 35, 63-70 (1998). 54 Craft, N. et al. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res 59, 5030-5036 (1999). 55 Bruchovsky, N. et al. Intermittent androgen suppression for prostate cancer: Canadian Prospective Trial and related observations. Molecular urology 4, 191-199;discussion 201 (2000). 56 Gregory, C. W., Johnson, R. T., Jr., Mohler, J. L., French, F. S. & Wilson, E. M. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 61, 2892-2898 (2001). 57 Buchanan, G. et al. Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res 7, 1273-1281 (2001). 58 Gregory, C. W. et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61, 4315-4319 (2001). 59 Adachi, M. et al. Androgen-insensitivity syndrome as a possible coactivator disease. The New England journal of medicine 343, 856-862, doi:10.1056/NEJM200009213431205 (2000). 60 Miyamoto, H., Yeh, S., Wilding, G. & Chang, C. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proceedings of the National Academy of Sciences of the United States of America 95, 7379-7384 (1998). 61 Bubendorf, L. et al. Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. Journal of the National Cancer Institute 91, 1758-1764 (1999). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63529 | - |
dc.description.abstract | 賀爾蒙療法用於治療前列腺癌已有四十年之久,但治療一段時間後常因癌細胞對雄性素的刺激不再敏感,而復發成為雄性素非依賴型的癌細胞,這類型的癌細胞具有較強的侵入性、增生能力和較快的惡化速度使病人在復發後有嚴重的症狀。目前的研究對於這種癌細胞的轉型機制並不清楚。在臨床的研究上發現,淋巴管新生和淋巴轉移的現象對於癌細胞的惡化扮演着重要的腳色。其中,血管內皮細胞生長因子-C (VEGF-C) 被認為是調控此機制的重要因素。近期的研究顯示雄性素在前列腺癌細胞中可以負向調控 VEGF-C 的表現。此外,大鼠前列腺及人類前列腺癌細胞株的生長在没有雄性素的環境中,可以在細胞內產生活性氧化物(ROS)。本實驗室先前的研究結果顯示,在前列腺癌細胞株 PC-3 中,水解磷酸酯(LPA) 可以藉由刺激 ROS 的產生而促進 VEGF-C 的表現。本論文嘗試在不同種類的前列腺癌細胞內,以雄性素促進劑與拮抗劑對LPA、ROS、VEGF-C 路徑的影響,了解雄性素在前列腺癌細胞的惡化過程中所扮演的角色。在 PC-3 細胞內,即時定量聚合酶連鎖反應的分析顯示 LPA 刺激 VEGF-C 的表現會随着時間有不同的表現。此外,加入不同的雄性素促進劑可以有效地降低 LPA 刺激 VEGF-C 的表現。相反地,加入雄性素拮抗劑則可以明顯地促進 VEGF-C 的表現。另一方面,利用流式細胞儀檢測 LPA 刺激細胞產生的 ROS 量,會因為加入雄性素促進劑而下降,而加入雄性素拮抗劑則有相反的效果。因此,在我的研究中顯示 LPA 透過ROS 而產生VEGF-C 的機轉會受到生長環境中的雄性素調控。經本實驗結果,我們推論前列腺癌細胞藉由LPA、ROS、VEGF-C、淋巴管新生和淋巴轉移的這條路徑,可能會與雄性素的訊息傳遞路徑互相影響。此研究可為預防前列腺癌細胞產生惡化提供一項新的治療方針。 | zh_TW |
dc.description.abstract | Androgen deprivation therapy has been used to treat prostate cancer for over 40 years; however, it often recurs with severe adverse effects such as increase of invasion, proliferation, and malignancy of tumor due to its insensitivity to androgen stimulation. The molecular mechanisms of this gradual transition are not clearly understood. Clinical evidences suggest that lymphangiogenesis and lymphatic metastasis, which are significantly affected by vascular endothelial growth factor (VEGF-C), are important processes during the malignant progression of prostate cancer. Recent reports indicate
that androgen negatively regulates VEGF-C in prostate cancer cell lines. Additionally, androgen deprivation leads to intracellular reactive oxygen species (ROS) generation in rat prostate and a human androgen-dependent prostate cancer cell line LNCaP. Furthermore, our previous studies demonstrated that lysophosphatidic acid (LPA) induces the expression of VEGF-C through ROS generation in PC-3 cells, a human androgen-independent prostate cancer cell line. Therefore, we attempt to investigate the roles of androgen in the malignance process by studying its effects on LPA-induced VEGF-C expression through ROS generation in different prostate cancer cells. Real-time PCR analysis proved that LPA-triggered VEGF-C expression is time-dependent in prostate cancer cells. In addition, our results showed that androgen agonists, mibolerone and dihydrotestosterone (DHT), decrease LPA-induced VEGF-C expression. In contrast, androgen antagonist, bicalutamide, enhances LPA- induced VEGF-C expression. Flow cytometric analysis revealed that LPA-triggered ROS generation was decreased by mibolerone and DHT and enhanced by bicalutamide in prostate cancer cell lines. In summary, we demonstrated that androgen negatively regulates LPA-induced VEGF-C expression through ROS generation in human prostate cancer cell lines. We may infer that LPA induced VEGF-C through ROS crosstalk with androgen signaling. These findings potentially lead to develop a new strategy for preventing lymphatic metastasis of prostate cancer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:13:38Z (GMT). No. of bitstreams: 1 ntu-101-R99b41018-1.pdf: 1354905 bytes, checksum: 7e8ab082c22443d2e188ede1c9a63dbd (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | CONTENTS
口試委員審定書………………………………………………………….I 致謝……………………………………………………………………...II 中文摘要………………………………………………………………III Abstract ………………………………………………………………..IV Introduction……………………………………………………………..1 Mechanisms of Androgen in Prostate Cancer…………………………………...1 Hormone Therapy and Androgen-Independent Prostate Cancer………………..2 Lysophosphatidic Acid…………………………………………………………...3 Metastasis and Lymphangiogenesis in Prostate Cancer………………………...4 LPA and Lymphangiogenesis……………………………………………………5 Reactive Oxygen Species……………………………………………………..6 Rationale………………………………………………………………..8 Materials and Methods…………………………………………………9 Cell culture……………………………………………………………………9 LPA stimulation…………………………………………………………………9 Androgen agonist and antagonist treatment…………………………………….10 Western blot analysis………….……………………………………………….10 Measurement of intracellular ROS…..………………………………………….11 RNA isolation and Reverse-transcription (RT)…………………………………11 Quantitative real-time PCR……………………………………………………12 Statistical analysis………………………………………………………………12 Results…………………………………………………………………13 LPA receptors and Androgen receptor expression profile in different prostate cancer cell lines……………………………………………………………..…13 LPA induces VEGF-C mRNA expression in time-dependent manner in prostate cancer cell lines…………………………………………………….……...........13 Androgen agonist DHT and mibolerone decreases LPA-induced VEGF-C expression in prostate cancer cell lines.………………………………………...14 Androgen antagonist bicalutamide enhances LPA-induced VEGF-C expression in prostate cancer cell lines.......…………………………………………15 Androgen regulates LPA-induced ROS production in different prostate cancer cell lines…………………………………………………………………………15 Discussions………………………………………………………….17 References………………………………………………………………22 Figures………………………………………………………………….32 Figure 1…………………………………………………………………………32 Figure 2…………………………………………………………………………34 Figure 3…………………………………………………………………………36 Figure 4…………………………………………………………………………38 Figure 5…………………………………………………………………………40 Figure 6…………………………………………………………………………42 | |
dc.language.iso | en | |
dc.title | 雄性素對於前列腺癌細胞水解磷酸調控淋巴管生成因子的訊息傳遞路徑影響之研究 | zh_TW |
dc.title | The Study of Androgen Effects on LPA-induced VEGF-C Signaling in Different Human Prostate Cancer Cell Lines | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李明學(Ming-Shyue Lee),黃元勵(Yuan-Li Huang) | |
dc.subject.keyword | 雄性素,前列腺癌,血管內皮細胞生長因子-C,水解磷酸酯,活性氧化 物, | zh_TW |
dc.subject.keyword | Androgen: Prostate cancer,Vascular endothelial growth factor (VEGF-C),Lysophosphatidic acid (LPA),Reactive oxygen species (ROS), | en |
dc.relation.page | 44 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-20 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。