Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63523
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周楚洋
dc.contributor.authorYu-Wen Huangen
dc.contributor.author黃郁雯zh_TW
dc.date.accessioned2021-06-16T17:13:34Z-
dc.date.available2013-09-04
dc.date.copyright2012-09-04
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citation行政院農業委員會。2012。100年11月底養豬頭數調查報告。網址: http://www.coa.gov.tw/show_index.php。上網日期。2012-04-30。
吳亞謙。2011。添加石墨粉對固定化微生物燃料電池產電效能之影響。碩士論文。台北:台灣大學生物產業機電工程研究所。
陳國誠。2000。生物固定化技術與產業應用。初版,33-36,417-423。台北:茂昌。
劉安琪。1996。應用固定化細胞技術處理豬糞尿廢水。碩士論文。台北:台灣大學生物產業機電工程系研究所。
羅一中。2010。接種量及進料pH對固定化微生物燃料電池效能之影響。碩士論文。台北:台灣大學生物產業機電工程系研究所。
Aelterman, P., K. Rabaey, T.H. Pham, N. Boon and W. Verstraete. 2005. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environmental Science & Technology. accepted for publication.
APHA. 1992. Standard method for the examination of water and wastewater. 18th Edition. Washington.
Angenent, L.T.and B. A.Wrenn. 2008. Optimizing mixed-culture bioprocessing to convert wastes into bioenergy. In: Wall, J.D., Harwood, C.S., A. Demain, (Eds.), Bioenergy. ASM Press, Herndon, VA, USA, pp. 179–194.
Bard, A. J. and L.R. Faulkner.2001. Electrochemical Methods: Fundamentals and Applications, 2nd, New York, John Wiley & Sons.
Chen, K. C., S. C. Lee, S.C. Chin and J.Y. Houng. 1998. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme and Microbial. Technology. 23: 311-320
Cheng, S. and B. E. Logan. 2011. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresource Technology. 102: 4468–4473.
Cheng, S., H. Liu and B.E. Logan. 2006. Power densities using different cathode catalyst (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol. 40: 364–9.
Chou, C.Y. 1989. Computer control of anaerobic reaactor untilizing a nonlinear self-turning regulator. Ph.D. dissertation. Gainesville fl.:University of Florida.
Delaney, G.M., H. P. Bennett, J. R. Mason, S. D. Roller and J. L. Stirling. 1984. Thurston CF. Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator- substrate combinations. J Chem. Tech. Biotechnol. 34B: 13–27.
Dewan, A., C. Donvan, D. Heo and H. Beyenal. 2010. Evaluating the performance of microbial fuel cells powering electronic devices. J. Power Sources. 195: 90–96
Dewan, A., H. Beyenal and Z. Lewandowski. 2008. Scaling up microbial fuel cell. Environ. Sci. Technol. 42: 7643-7648.
Donovan,C., A. Dewan., D. Heo and H. Beyenal. 2008. Batteryless, Wireless Sensor Powered by a Sediment Microbial Fuel Cell. Environ. Sci. Technol. 42: 8591–8596.
Du, Z.W., H.R. Li and T.Y. Gu. 2007. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25:464– 482.
Fan, Y. Z., H. Q. Hu and H. Liu. 2007. Enhanced coulombic efficiency and power density of air–cathode microbial fuel cells with an improved cell configuration. J J. Power Sources. 171: 348–354.
Fang, Z., S. Tomonori, C. Shaoan, A. H. Michael and B. E. Logan. 2010. Microbial Fuel Cell Cathodes with Poly (dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors. Environ. Sci. Technol. 44: 1490–1495.
Feng, Y., X. Wang, B.E. Logan and H. Lee. 2008. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl. Microbiol. Biotechnol. 78: 873–880.
Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors and Bioelectronics. 18: 327-334.
He, Z., N. Wagner, S.D. Minteer and L.T. Angenent. 2006. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 40: 5212–7.
He, Z., S. D. Minteer and L. Angenent. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39: 5262–7.
Heilmann, J. and B. E. Logan. 2006. Production of electricity from protein using single chamber microbial fuel cell, Water Environ. Res. 78: 1716–1721.
Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho and B. H. Kim. 2004. Construction and operation of a novel mediator and membrane-less microbial fuel cell. Process Biochem. 39: 1007-1012.
Kim, J. R., G. C. Premier, F. R. Hawkes, R. M. Dinsdale and A. J. Guwy. 2009. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Power Sources. 187 (2): 393–399.
Larminie, J. and A. Dicks. 2000. Fuel Cell Systems Explained. 2nd ed. John Wiley: Chichester.
Liu, H. and B. E. Logan. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38: 4040–4046.
Liu, H., S. A. Cheng and B. E. Logan. 2005. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol. 39: 658–662.
Logan, B. E. 2008. Microbial fuel cells. John Wiley & Sons, Inc: New York.
Logan, B. E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7 (5): 375-381
Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller , S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey. 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40 (17): 5181-92.
Logan, B. E., C. Murano, K. Scott, N. D. Gray and I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Water Resour. 39: 942–952.
Meehan, A., H. Gao and Z. Lewandowski. 2011. Energy harvesting with microbial fuel cell and power management system. IEEE T. POWER ELECTR. 26: 176- 181.
Min, B. and B. E. Logan.2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38: 5809–14
Min, B., J. R. Kim, S. Oh, J. M. Regan and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Resour. 39: 4961–4968.
Panasonic Industrial Company. 2005. Gold capacitors technical guide.
Pham, T. H., K. Rabaey, P. Aelterman, P. Clauwaert, L. D. Schamphelaire , N. Boon and W. Verstraete. 2006. Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng. Life Sci. 6: 285–292.
Potter, M. C. 1911. Electrical effects accompanying the decomposition of organic compounds. Proceeding of the Royal. Society of London. 84 (571): 160–276.
Rabaey, K. and W. Verstraete. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23: 291–298.
Reimers, C. E., L. M. Tender, S. Fertig and W. Wang. 2001. Harvesting energy from the marine water interface. Environ. Sci. Technol. 35: 192–195.
Rhoads, A., H. Beyenal and Z. Lewandowski.2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ. Sci. Technol. 39 (12): 4666–4671.
Ringeisen, B. R., E. Henderson, P. K. Wu, J. Pietron, R. Ray and B. Little. 2006. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40: 2629–34.
Tender, L.M., S.A. Gray, E. Groveman, D.A. Lowy, P. Kauffman, J. Melhado, P.C. Tyce, D. Flynn, R. Pettrecca, J. Dobarro. 2008. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J. Power Sources. 197: 1171- 1177.
Texas Instruments. 1999. Understanding buck-boost power stages in switch mode power supplies, application report.
Texas Instruments. 2008. Low Input Voltage Synchronous Boost Converter W1.3-A Switches, TPS61200 Datasheet.
Verstraete, W., F. Morgan-Sagastume, S. Aiyuk, K. Rabaey, M. Waweru and G. Lissens.2005. Anaerobic digestion as a core technology in sustainable management of organic matter. Water Sci. Technol. 52: 59–66.
Wang, X., Y. Feng, N. Ren, H. Wang, H. Lee and N. Li, Q. Zhao. 2009. Accelerated start-up of two-chambered microbial fuel cells: effect of positive poised potential. Electrochim. Acta. 54: 1109–1114.
Wilkinson, S. 2000. Gastrobots— benefits and challenges of microbial fuel cells in food powered robot applications. Auton. Robot. 9: 99−111.
Zhang, F., L. Tian, and Z. He. 2011. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J. Power Sources. 196: 9568- 9573.
Zuo, Y., S. Cheng, D. Call and B.E. Logan. 2007. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ. Sci. Technol. 41: 3347–3353.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63523-
dc.description.abstract生物燃料電池兼具產生電能與處理廢水的兩種功能,若將其運用於豬場可達到處理豬糞尿水並獲得電能以回饋豬場的雙重優點,但微生物燃料電池所產生的能量並不足以直接啟動電子零件。
為增加MFC的輸出電壓,串聯兩個MFC為一系統,本實驗以豬場厭氧污泥作為菌種,將其製作為固定化細胞放置於陽極槽內。利用人工廢水操作在兩種不同的HRT條件下對菌種馴養(短時間馴養: HRT 1天;長時間馴養: HRT 3天),接著以豬糞尿水做為進流並操作於HRT 3天、1天以及0.5天下,觀察不同操作條件對於MFC系統產電效能的影響。結果顯示在相同HRT下,菌種經過長時間的馴養有利於COD去除率的提升以及內電阻的下降。而HRT的縮短將不利於COD的去除率,對於電壓以及電流的表現並沒有顯著差異。串聯MFC會導致庫倫效率的下降,不利於電子回收。
以超級電容、開關與升壓轉換器製作一儲電系統,將MFC系統產生的能量儲存於不同容量的超級電容中(1 F、6.6 F及10 F)。儲電至電容電壓達0.5 V計算儲電效能,最後利用升壓轉換器穩定輸出3.3 V,用以啟動紅光LED。兩種馴化條件皆在連接1 F超級電容時可獲得最大的平均儲存速率,但1 F的超級電容電壓達1.4 V僅提供不到1 W的電量,在實際運用上略嫌不足。儲電效能隨電容容量的增大而下降,但大容量的電容可儲存較多的電量,因此可依實際的負載需求選擇合適的電容。MFC系統將能量儲存至10 F的超級電容達充電電壓0.7 V時,可提供一顆紅色LED燈點亮約10秒。
zh_TW
dc.description.abstractMicrobial fuel cell could produce electricity and treat wastewater at same time. If MFC applied to farms to reach the dual advantages, the deal with swine waste water and electricity to feedback of the pig farms. But energy generated by the microbial fuel cell not enough to start the electronic components directly.
To increase the output voltage of the MFC, two air-cathode MFCs were connected in series.In this study, immobilized cells with anaerobic bacteria which was acquire from a three-stage swine wastewater treatment system were packed into the anodic compartment. The artificial wastewater operations bacteria acclimated in two different HRT conditions (short period of acclimation: HRT 1; long period of acclimation: the HRT 3 days), followed by swine waste water as substrate and operating at HRT 3 days,1 day, and 0.5 day. To investigate the performance impact of different operating conditions for the electricity production of the MFC system. The results show that under the same HRT, the bacteria after a long period of acclimation is conducive to the enhancement of COD removal efficiency and to reduce the internal resistance. HRT shortening will be decreased the COD removal, voltage and current performance and no significant difference. Series MFC will lead to a decline in the coulomb efficiency is not conducive to electronic recycling.
Eelectrical storage system contained super capacitors, switches, and the boost converter. The energy generated by the MFC system is stored in a different capacity super capacitor (1 F, 6.6 F and 10 F). The electrical storage capacitor voltage of 0.5 V to calculate the electrical storage performance, and finally the stability of the boost converter output 3.3 V, to start the red LED. The maximum average storage rate of the two acclimation condition would appear in the super capacitor of 1 F connection. However, if the capacitor voltage up to 1.4 V, the super capacitor of 1 F only provide less than 1 W of power, a bit less than in actual use. Electrical storage efficiency decreased with the increase of the capacitance, but large-capacity capacitor can store more power, so according to the actual load demand to choose the right capacitor. MFC system would store the energy to super capacitor of 10 F, and when the charging voltage reached 0.7 V, a red LED lights for approximately 10 seconds.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T17:13:34Z (GMT). No. of bitstreams: 1
ntu-101-R99631009-1.pdf: 2289484 bytes, checksum: db5688242f017256f8c7e57dc623614a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言與研究目的 1
第二章 文獻探討 2
2-1微生物燃料電池的基本原理 2
2-2影響微生物燃料電池效能之因素 2
2-2-1微生物 3
2-2-2基質 4
2-2-3電化學損失 5
2-3微生物燃料電池反應槽類型 6
2-3-1雙槽式微生物燃料電池 6
2-3-2單槽式空氣陰極微生物燃料電池 (air-cathode MFC) 7
2-4微生物燃料電池之應用 8
2-4-1微生物燃料電池應用於廢水處理 8
2-4-2堆疊微生物燃料電池 (stacked MFC) 9
2-5微生物燃料電池之儲電 10
2-5-1直流轉直流轉換器 (DC to DC converter) 10
2-5-2超級電容 (supercapacitor) 11
2-5-3儲電系統於MFC之應用 12
2-6固定化微生物技術 13
第三章 研究方法 15
3-1實驗材料與設備 15
3-1-1菌種與固定化細胞製作 15
3-1-2廢水成分 17
3-1-4 Air-cathode MFC反應槽結構 19
3-1-5直流轉直流升壓轉換器TPS61200EVM-179 20
3-2實驗設計 22
3-2-1 MFC操作 22
3-2-2 短時間與長時間馴養 22
3-2-3 質子交換膜清洗頻率測試 23
3-2-4 超級電容儲存效率測試 23
3-2-4儲電系統 25
3-3分析方法 26
3-3-1 pH 26
3-3-2 COD 26
3-3-3電化學儀器與分析 26
第四章 結果與討論 28
4-1短時間馴養 28
4-1-1 pH 28
4-1-2 COD去除率 31
4-1-4充電效率 39
4-2長時間馴養 41
4-2-1 pH 41
4-2-2 COD去除率 43
4-2-3產電效能 47
4-2-4充電效率 49
4-3短時間馴養與長時間馴養的差異比較 54
4-3-1以人工廢水為基質 54
4-3-2以豬糞尿水為基質 56
4-4質子交換膜清洗頻率測試 58
4-4-1產電效能 58
4-4-2充電效率 61
4-5放電測試 65
第五章 結論與建議 67
參考文獻 69
dc.language.isozh-TW
dc.subject微生物zh_TW
dc.subject燃料電池zh_TW
dc.subject厭氧污泥zh_TW
dc.subject人工廢水zh_TW
dc.subject儲電系統zh_TW
dc.subjectartificial wastewateren
dc.subjectfuel cellen
dc.subjectanaerobic bacteriaen
dc.subjectEelectrical storage systemen
dc.subjectMicrobialen
dc.title微生物燃料電池與儲電系統效能之探討zh_TW
dc.titleInvestigation of Performances of the Microbial Fuel Cell (MFC) and Electricity Storage Systemen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈韶儀,李允中
dc.subject.keyword微生物,燃料電池,厭氧污泥,人工廢水,儲電系統,zh_TW
dc.subject.keywordMicrobial,fuel cell,anaerobic bacteria,artificial wastewater,Eelectrical storage system,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2012-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved