請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63517
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張書瑋 | |
dc.contributor.author | Deng Li | en |
dc.contributor.author | 李登 | zh_TW |
dc.date.accessioned | 2021-06-16T17:13:30Z | - |
dc.date.available | 2027-04-16 | |
dc.date.copyright | 2020-07-15 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-04-16 | |
dc.identifier.citation | Aprodu, I., Redaelli, A., & Soncini, M. (2008). Actomyosin interaction: mechanical and energetic properties in different nucleotide binding ssates. International Journal of Molecular Sciences, 9(10), 1927-1943. doi:10.3390/ijms9101927
Bajpayee, A. G., & Grodzinsky, A. J. (2017a). Cartilage-targeting drug delivery: can electrostatic interactions help? Nature Reviews Rheumatology, 13(3), 183-193. doi:10.1038/nrrheum.2016.210 Bajpayee, A. G., & Grodzinsky, A. J. (2017b). Cartilage-targeting drug delivery: can electrostatic interactions help? Nat Rev Rheumatol, 13(3), 183-193. doi:10.1038/nrrheum.2016.210 Barnes, M. R. (2007). Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic Data. John Wiley & Sons. p. 326. ISBN 9780470026199. Bertini, I., Calderone, V., Fragai, M., Luchinat, C., Maletta, M., & Yeo, K. J. (2006). Snapshots of the reaction mechanism of matrix metalloproteinases. Angewandte Chemie-International Edition, 45(47), 7952-7955. doi:10.1002/anie.200603100 Buckwalter, J. A. (2012). The role of mechanical forces in the initiation and progression of osteoarthritis. HSS Journal, 8(1), 37-38. doi:10.1007/s11420-011-9251-y Buehler, M. J. (2010). Atomistic modeling of materials failure. New York: Springer. Capelli, A. M., & Costantino, G. (2014). Unbinding pathways of VEGFR2 inhibitors revealed by steered molecular dynamics. Journal of chemical information and modeling, 54(11), 3124. doi:10.1021/ci500527j Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem, 253(1-2), 269-285. Cheng, F., Zhang, R., Luo, X., Shen, J., Li, X., Gu, J., . . . Jiang, H. (2002). Quantum Chemistry Study on the Interaction of the Exogenous Ligands and the Catalytic Zinc Ion in Matrix Metalloproteinases. The Journal of Physical Chemistry B, 106(17), 4552-4559. doi:10.1021/jp013336j Colige, A., Vandenberghe, I., Thiry, M., Lambert, C. A., Van Beeumen, J., Li, S. W., . . . Nusgens, B. V. (2002). Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem, 277(8), 5756-5766. doi:10.1074/jbc.M105601200 Colizzi, F., Perozzo, R., Scapozza, L., Recanatini, M., & Cavalli, A. (2010). Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. Journal of the American Chemical Society, 132(21), 7361. doi:10.1021/ja100259r Cranford, S. W., Ortiz, C., & Buehler, M. J. (2010). Mechanomutable properties of a PAA/PAH polyelectrolyte complex: rate dependence and ionization effects on tunable adhesion strength. Soft Matter, 6(17), 4175-4188. doi:10.1039/c0sm00095g Crooks, G. E. (2000). Path-ensemble averages in systems driven far from equilibrium. Physical Review E, 61(3), 2361-2366. doi:DOI 10.1103/PhysRevE.61.2361 Dancevic, C. M., & McCulloch, D. R. (2014). Current and emerging therapeutic strategies for preventing inflammation and aggrecanase-mediated cartilage destruction in arthritis. Arthritis Research & Therapy, 16(5), 429. Dellago, C., & Hummer, G. (2013). Computing equilibrium free energies using non-equilibrium molecular dynamics. Entropy, 16(1), 41-61. doi:10.3390/e16010041 Deng, Z. Q., Paknejad, N., Maksaev, G., Sala-Rabanal, M., Nichols, C. G., Hite, R. K., & Yuan, P. (2018). Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nature Structural & Molecular Biology, 25(3), 252-+. doi:10.1038/s41594-018-0037-5 Durigova, M., Nagase, H., Mort, J. S., & Roughley, P. J. (2011). MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. Matrix Biology, 30(2), 145-153. doi:10.1016/j.matbio.2010.10.007 Eckhard, U., Huesgen, P. F., Schilling, O., Bellac, C. L., Butler, G. S., Cox, J. H., . . . Overall, C. M. (2016). Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14. Data Brief, 7, 299-310. doi:10.1016/j.dib.2016.02.036 Eckhard, U., Huesgen, P. F., Schilling, O., Bellac, C. L., Butler, G. S., Cox, J. H., . . . Overall, C. M. (2016). Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol, 49, 37-60. doi:10.1016/j.matbio.2015.09.003 Felisbino, S. L., & Carvalho, H. F. (1999). The epiphyseal cartilage and growth of long bones in Rana catesbeiana. Tissue & Cell, 31(3), 301-307. doi:DOI 10.1054/tice.1999.0036 Felson, D. T. (2013). Osteoarthritis as a disease of mechanics. Osteoarthritis Cartilage, 21(1), 10-15. doi:10.1016/j.joca.2012.09.012 Ferreira, M. F. J., Franca, E. F., & Leite, F. L. (2017). Unbinding pathway energy of glyphosate from the EPSPs enzyme binding site characterized by Steered Molecular Dynamics and Potential of Mean Force. Journal of Molecular Graphics and Modelling, 72, 43-49. doi:10.1016/j.jmgm.2016.11.010 Fiser, A., & Sali, A. (2003). MODELLER: Generation and refinement of homology-based protein structure models. Macromolecular Crystallography, Pt D, 374, 461-491. doi:Doi 10.1016/S0076-6879(03)74020-8 Fosang, A. J., Rogerson, F. M., East, C. J., & Stanton, H. (2008). ADAMTS-5: The story so far. European Cells & Materials, 15, 11-26. doi:DOI 10.22203/eCM.v015a02 Freddolino, P. L., Gardner, K. H., & Schulten, K. (2013). Signaling mechanisms of LOV domains: new insights from molecular dynamics studies. Photochem Photobiol Sci, 12(7), 1158-1170. doi:10.1039/c3pp25400c Fujikawa, K., Suzuki, H., McMullen, B., & Chung, D. (2001). Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood, 98(6), 1662-1666. doi:DOI 10.1182/blood.V98.6.1662 Ganea, E., Trifan, M., Laslo, A. C., Putina, G., & Cristescu, C. (2007). Matrix metalloproteinases: useful and deleterious. Biochem Soc Trans, 35(Pt 4), 689-691. doi:10.1042/BST0350689 Glykos, N. M. (2006). Software news and updates - Carma: A molecular dynamics analysis program. Journal of Computational Chemistry, 27(14), 1765-1768. doi:10.1002/jcc.20482 Gupta, S. P. (2012). Matrix Metalloproteinase Inhibitors. Gupta, S. P. (2012). Matrix metalloproteinase inhibitors: specificity of binding and structure-activity relationships. Exp Suppl, 103, v-vi. Han, L., Dean, D., Mao, P., Ortiz, C., & Grodzinsky, A. J. (2007). Nanoscale shear deformation mechanisms of opposing cartilage aggrecan macromolecules. Biophys J, 93(5), L23-25. doi:10.1529/biophysj.107.114025 Hardingham, T. E., & Fosang, A. J. (1995). The structure of aggrecan and its turnover in cartilage. J Rheumatol Suppl, 43, 86-90. Hines, S. L., Richter, J. E., Mohammad, A. N., Mahim, J., Atwal, P. S., & Caulfield, T. R. (2019). Protein informatics combined with multiple data sources enriches the clinical characterization of novel TRPV4 variant causing an intermediate skeletal dysplasia. Molecular Genetics & Genomic Medicine, 7(3). doi:10.1002/mgg3.566 Hu, G., Xu, S., & Wang, J. (2015). Characterizing the free-energy landscape of MDM2 protein-ligand interactions by steered molecular dynamics simulations. Chemical Biology & Drug Design, 86(6), 1351-1359. doi:10.1111/cbdd.12598 Huang, K., & Wu, L. D. (2008). Aggrecanase and aggrecan degradation in osteoarthritis: a review. Journal of International Medical Research, 36(6), 1149-1160. doi:Doi 10.1177/147323000803600601 Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics & Modelling, 14(1), 33-38. doi:Doi 10.1016/0263-7855(96)00018-5 Itoh, Y. (2017). Metalloproteinases in Rheumatoid Arthritis: Potential Therapeutic Targets to Improve Current Therapies. Prog Mol Biol Transl Sci, 148, 327-338. doi:10.1016/bs.pmbts.2017.03.002 Jacobsen, J. A., Major Jourden, J. L., Miller, M. T., & Cohen, S. M. (2010). To bind zinc or not to bind zinc: An examination of innovative approaches to improved metalloproteinase inhibition. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1803(1), 72-94. doi:https://doi.org/10.1016/j.bbamcr.2009.08.006 Jarzynski, C. (1997). Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Physical Review E, 56(5), 5018-5035. doi:DOI 10.1103/PhysRevE.56.5018 Jo, S., Cheng, X., Islam, S. M., Huang, L., Rui, H., Zhu, A., . . . Im, W. (2014). CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Advances in Protein Chemistry and Structural Biology, 96, 235-265. doi:10.1016/bs.apcsb.2014.06.002 Jorgensen, W. L., Maxwell, D. S., & TiradoRives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225-11236. doi:Doi 10.1021/Ja9621760 Kalva, S., Azhagiya Singam, E. R., Rajapandian, V., Saleena, L. M., & Subramanian, V. (2014). Discovery of potent inhibitor for matrix metalloproteinase-9 by pharmacophore based modeling and dynamics simulation studies. Journal of Molecular Graphics and Modelling, 49, 25-37. doi:10.1016/j.jmgm.2013.12.008 Kelwick, R., Desanlis, I., Wheeler, G. N., & Edwards, D. R. (2015). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol, 16, 113. doi:10.1186/s13059-015-0676-3 Khrenova, M. G., Nemukhin, A. V., & Savitsky, A. P. (2014). Computational Characterization of Ketone-Ketal Transformations at the Active Site of Matrix Metalloproteinases. Journal of Physical Chemistry B, 118(16), 4345-4350. doi:10.1021/jp501674b Kiani, C., Chen, L., Wu, Y. J., Yee, A. J., & Yang, B. B. (2002a). Structure and function of aggrecan. Cell Research, 12(1), 19-32. doi:DOI 10.1038/sj.cr.7290106 Kiani, C., Chen, L., Wu, Y. J., Yee, A. J., & Yang, B. B. (2002b). Structure and function of aggrecan. Cell Res, 12(1), 19-32. doi:10.1038/sj.cr.7290106 Kormi, I., Nieminen, M. T., Havulinna, A. S., Zeller, T., Blankenberg, S., Tervahartiala, T., . . . Pussinen, P. J. (2017). Matrix metalloproteinase-8 and tissue inhibitor of matrix metalloproteinase-1 predict incident cardiovascular disease events and all-cause mortality in a population-based cohort. European Journal of Preventive Cardiology, 24(11), 1136-1144. doi:10.1177/2047487317706585 Kormos, B. L., Baranger, A. M., & Beveridge, D. L. (2006). Do collective atomic fluctuations account for cooperative effects? Molecular dynamics studies of the U1A-RNA complex. Journal of the American Chemical Society, 128(28), 8992-8993. doi:10.1021/ja0606071 Kulke, M., Geist, N., Friedrichs, W., & Langel, W. (2017). Molecular dynamics simulations on networks of heparin and collagen. Proteins-Structure Function and Bioinformatics, 85(6), 1119-1130. doi:10.1002/prot.25277 Lamande, S. R., Yuan, Y., Gresshoff, I. L., Rowley, L., Belluoccio, D., Kaluarachchi, K., . . . Bateman, J. F. (2011). Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nature Genetics, 43(11), 1142-U1141. doi:10.1038/ng.945 Levitt, M., & Warshel, A. (1975). Computer-Simulation of Protein Folding. Nature, 253(5494), 694-698. doi:DOI 10.1038/253694a0 Li, D., & Chang, S. W. (2019). Effects of Deformation Rate on the Unbinding Pathway of the MMP8-Aggrecan_IGD Complex in Cartilage. Cmes-Computer Modeling in Engineering & Sciences, 120(2), 305-318. doi:10.32604/cmes.2019.06475 Liu, C. J., Kong, W., Ilalov, K., Yu, S., Xu, K., Prazak, L., . . . Di Cesare, P. E. (2006). ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. Faseb Journal, 20(7), 988-+. doi:10.1096/fj.05-3877fje Lu, K. G., & Stultz, C. M. (2013). Insight into the Degradation of Type-I Collagen Fibrils by MMP-8. Journal of Molecular Biology, 425(10), 1815-1825. doi:10.1016/j.jmb.2013.02.002 MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., . . . Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18), 3586-3616. Malemud, C. J. (2015). Biologic basis of osteoarthritis: state of the evidence. Current Opinion in Rheumatology, 27(3), 289-294. doi:10.1097/Bor.0000000000000162 Malemud, C. J. (2017). Matrix Metalloproteinases and Synovial Joint Pathology. Progress in Molecular Biology and Translational Science, 148, 305-325. doi:10.1016/bs.pmbts.2017.03.003 Manka, S. W., Carafoli, F., Visse, R., Bihan, D., Raynal, N., Farndale, R. W., . . . Nagase, H. (2012). Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12461-12466. doi:10.1073/pnas.1204991109 Martel-Pelletier, J., Barr, A. J., Cicuttini, F. M., Conaghan, P. G., Cooper, C., Goldring, M. B., . . . Pelletier, J. P. (2016). Osteoarthritis. Nature Reviews Disease Primers, 2. doi:10.1038/nrdp.2016.72 Mccammon, J. A., Gelin, B. R., & Karplus, M. (1977). Dynamics of Folded Proteins. Nature, 267(5612), 585-590. doi:DOI 10.1038/267585a0 Mikic, B., Wong, M., Chiquet, M., & Hunziker, E. B. (2000). Mechanical modulation of tenascin-C and collagen-XII expression during avian synovial joint formation. J Orthop Res, 18(3), 406-415. doi:10.1002/jor.1100180312 Morra, G., Verkhivker, G., & Colombo, G. (2009). Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer. PLoS Comput Biol, 5(3), e1000323. doi:10.1371/journal.pcbi.1000323 Mosyak, L., Georgiadis, K., Shane, T., Svenson, K., Hebert, T., McDonagh, T., . . . Somers, W. (2008). Crystal structures of the two major aggrecan degrading enzymes, ADAMTS4 and ADAMTS5. Protein Science, 17(1), 16-21. doi:10.1110/ps.073287008 Nagase, H., & Kashiwagi, M. (2003). Aggrecanases and cartilage matrix degradation. Arthritis Research & Therapy, 5(2), 94-103. doi:10.1186/ar630 Nap, R. J., & Szleifer, I. (2008). Structure and Interactions of Aggrecans: Statistical Thermodynamic Approach. Biophysical Journal, 95(10), 4570-4583. doi:10.1529/biophysj.108.133801 Ni, D., Song, K., Zhang, J., & Lu, S. (2017). Molecular Dynamics Simulations and Dynamic Network Analysis Reveal the Allosteric Unbinding of Monobody to H-Ras Triggered by R135K Mutation. Int J Mol Sci, 18(11). doi:10.3390/ijms18112249 Niu, Y., Li, S., Pan, D., Liu, H., & Yao, X. (2016). Computational study on the unbinding pathways of B-RAF inhibitors and its implication for the difference of residence time: insight from random acceleration and steered molecular dynamics simulations. Physical Chemistry Chemical Physics, 18(7), 5622-5629. doi:10.1039/c5cp06257h Overall, C. M. (2002). Molecular determinants of metalloproteinase substrate specificity - Matrix metalloproteinase substrate binding domains, modules, and exosites. Molecular Biotechnology, 22(1), 51-86. doi:Doi 10.1385/Mb:22:1:051 Patel, J. S., Berteotti, A., Ronsisvalle, S., Rocchia, W., & Cavalli, A. (2014). Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5. Journal of chemical information and modeling, 54(2), 470-480. doi:10.1021/ci4003574 Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Debolt, S., . . . Kollman, P. (1995). Amber, a Package of Computer-Programs for Applying Molecular Mechanics, Normal-Mode Analysis, Molecular-Dynamics and Free-Energy Calculations to Simulate the Structural and Energetic Properties of Molecules. Computer Physics Communications, 91(1-3), 1-41. doi:Doi 10.1016/0010-4655(95)00041-D Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., . . . Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289 Poole, A. R., Kobayashi, M., Yasuda, T., Laverty, S., Mwale, F., Kojima, T., . . . Wu, W. (2002). Type II collagen degradation and its regulation in articular cartilage in osteoarthritis. Ann Rheum Dis, 61 Suppl 2, ii78-81. doi:10.1136/ard.61.suppl_2.ii78 Pratta, M. A., Yao, W., Decicco, C., Tortorella, M. D., Liu, R. Q., Copeland, R. A., . . . Arner, E. C. (2003). Aggrecan protects cartilage collagen from proteolytic cleavage. The Journal of Biological Chemistry, 278(46), 45539-45545. doi:10.1074/jbc.M303737200 Renaux, A., & Consortium, U. (2018). UniProt: the universal protein knowledgebase (vol 45, pg D158, 2017). Nucleic Acids Research, 46(5), 2699-2699. doi:10.1093/nar/gky092 Roddy, K. A., Prendergast, P. J., & Murphy, P. (2011). Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS One, 6(2), e17526. doi:10.1371/journal.pone.0017526 Salsas-Escat, R., & Stultz, C. M. (2010). Conformational selection and collagenolysis in Type III collagen. Proteins-Structure Function and Bioinformatics, 78(2), 325-335. doi:10.1002/prot.22545 Sanner, M. F., Olson, A. J., & Spehner, J. C. (1996). Reduced surface: An efficient way to compute molecular surfaces. Biopolymers, 38(3), 305-320. doi:Doi 10.1002/(Sici)1097-0282(199603)38:3<305::Aid-Bip4>3.0.Co;2-Y Sarkar, A., Yu, W., Desai, U. R., MacKerell, A. D., & Mosier, P. D. (2016). Estimating glycosaminoglycan-protein interaction affinity: water dominates the specific antithrombin-heparin interaction. Glycobiology, 26(10), 1041-1047. doi:10.1093/glycob/cww073 Seog, J., Dean, D., Plaas, A. H. K., Wong-Palms, S., Grodzinsky, A. J., & Ortiz, C. (2002). Direct measurement of glycosaminoglycan intermolecular interactions via high-resolution force spectroscopy. Macromolecules, 35(14), 5601-5615. doi:10.1021/ma0121621 Sethi, A., Eargle, J., Black, A. A., & Luthey-Schulten, Z. (2009). Dynamical networks in tRNA:protein complexes. Proc Natl Acad Sci U S A, 106(16), 6620-6625. doi:10.1073/pnas.0810961106 Sharma, M., & Anirudh, C. R. (2017). Mechanism of mRNA-STAR domain interaction: Molecular dynamics simulations of Mammalian Quaking STAR protein. Scientific Reports, 7(1). doi:10.1038/s41598-017-12930-2 Shen, J., Li, W. H., Liu, G. X., Tang, Y., & Jiang, H. L. (2009). Computational insights into the mechanism of ligand unbinding and selectivity of estrogen receptors. Journal of Physical Chemistry B, 113(30), 10436-10444. doi:10.1021/jp903785h Shen, M., Guan, J., Xu, L., Yu, Y., He, J., Jones, G. W., & Song, Y. (2012). Steered molecular dynamics simulations on the binding of the appendant structure and helix-beta2 in domain-swapped human cystatin C dimer. Journal of Biomolecular Structure and Dynamics, 30(6), 652-661. doi:10.1080/07391102.2012.689698 Shen, Z., Cheng, F., Xu, Y., Fu, J., Xiao, W., Shen, J., . . . Tang, Y. (2012). Investigation of indazole unbinding pathways in CYP2E1 by molecular dynamics simulations. PLoS One, 7(3), e33500. doi:10.1371/journal.pone.0033500 Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A., & Sansom, M. S. (1996). HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph, 14(6), 354-360, 376. Stanton, H., Melrose, J., Little, C. B., & Fosang, A. J. (2011). Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta, 1812(12), 1616-1629. doi:10.1016/j.bbadis.2011.08.009 T, D., Venkatraman, P., & Vemparala, S. (2018). Phosphorylation promotes binding affinity of Rap-Raf complex by allosteric modulation of switch loop dynamics. Sci Rep, 8(1), 12976. doi:10.1038/s41598-018-31234-7 Tekpinar, M. (2018). Steered molecular dynamics simulations of coumarin2 5Z/5E pulling reveal different interaction profiles for four human cytosolic carbonic anhydrases. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2). doi:10.19113/sdufbed.47662 Tolboom, T. C., Pieterman, E., van der Laan, W. H., Toes, R. E., Huidekoper, A. L., Nelissen, R. G., . . . Huizinga, T. W. (2002). Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann Rheum Dis, 61(11), 975-980. doi:10.1136/ard.61.11.975 Troeberg, L., & Nagase, H. (2012). Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta, 1824(1), 133-145. doi:10.1016/j.bbapap.2011.06.020 Truong, D. T., & Li, M. S. (2018). Probing the binding affinity by Jarzynski's nonequilibrium binding free energy and rupture time. The Journal of Physical Chemistry B, 122(17), 4693-4699. doi:10.1021/acs.jpcb.8b02137 Van de Velde, S. K., Bingham, J. T., Hosseini, A., Kozanek, M., DeFrate, L. E., Gill, T. J., & Li, G. (2009). Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum, 60(12), 3693-3702. doi:10.1002/art.24965 Vanwart, A. T., Eargle, J., Luthey-Schulten, Z., & Amaro, R. E. (2012). Exploring residue component contributions to dynamical network models of allostery. J Chem Theory Comput, 8(8), 2949-2961. doi:10.1021/ct300377a Vashisth, H., & Abrams, C. F. (2008). Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex. Biophysical Journal, 95(9), 4193-4204. doi:10.1529/biophysj.108.139675 Venn, M., & Maroudas, A. (1977). Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Annals of the Rheumatic Diseases, 36(2), 121-129. Verma, R. P., & Hansch, C. (2007). Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorganic & Medicinal Chemistry, 15(6), 2223-2268. doi:10.1016/j.bmc.2007.01.011 West, D. K., Olmsted, P. D., & Paci, E. (2006). Free energy for protein folding from nonequilibrium simulations using the Jarzynski equality. The Journal of Chemical Physics, 125(20), 204910. doi:10.1063/1.2393232 Wojtowicz-Praga, S. M., Dickson, R. B., & Hawkins, M. J. (1997). Matrix metalloproteinase inhibitors. Invest New Drugs, 15(1), 61-75. Xu, L., Hasin, N., Shen, M., He, J., Xue, Y., Zhou, X., . . . Jones, G. W. (2013). Using steered molecular dynamics to predict and assess Hsp70 substrate-binding domain mutants that alter prion propagation. PLOS Computational Biology, 9(1), e1002896. doi:10.1371/journal.pcbi.1002896 Xue, Y. L., Zhou, L., Sun, Y., Li, H., Jones, G. W., & Song, Y. (2017). Steered molecular dynamics simulation of the binding of the bovine auxilin J domain to the Hsc70 nucleotide-binding domain. The Journal of Molecular Modeling, 23(11), 320. doi:10.1007/s00894-017-3453-2 Yang, C. Y., Chanalaris, A., & Troeberg, L. (2017). ADAMTS and ADAM metalloproteinases in osteoarthritis-looking beyond the 'usual suspects'. Osteoarthritis and Cartilage, 25(7), 1000-1009. doi:10.1016/j.joca.2017.02.791 Ytreberg, F. M. (2010). Computational Study of Small Molecule Binding for Both Tethered and Free Conditions. Journal of Physical Chemistry B, 114(16), 5431-5434. doi:10.1021/jp911704n Zhang, J.-l., Zheng, Q.-c., & Zhang, H.-x. (2010). Unbinding of glucose from human pulmonary surfactant protein D studied by steered molecular dynamics simulations. Chemical Physics Letters, 484(4-6), 338-343. doi:10.1016/j.cplett.2009.12.022 Zhang, L., & Buck, M. (2017). Molecular Dynamics Simulations Reveal Isoform Specific Contact Dynamics between the Plexin Rho GTPase Binding Domain (RBD) and Small Rho GTPases Rac1 and Rnd1. J Phys Chem B, 121(7), 1485-1498. doi:10.1021/acs.jpcb.6b11022 Zhang, W., Wang, M. L., & Cranford, S. W. (2016). Ranking of molecular biomarker interaction with targeted DNA nucleobases via full atomistic molecular dynamics. Scientific Reports, 6, 18659. doi:10.1038/srep18659 Zhang, Z., Santos, A. P., Zhou, Q., Liang, L., Wang, Q., Wu, T., & Franzen, S. (2016). Steered molecular dynamics study of inhibitor binding in the internal binding site in dehaloperoxidase-hemoglobin. Biophys Chem, 211, 28-38. doi:10.1016/j.bpc.2016.01.003 Zhu, Y., Yang, S., Qi, R., Zou, Y., Ma, B., Nussinov, R., & Zhang, Q. (2015). Effects of the C-Terminal Tail on the Conformational Dynamics of Human Neuronal Calcium Sensor-1 Protein. J Phys Chem B, 119(44), 14236-14244. doi:10.1021/acs.jpcb.5b07962 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63517 | - |
dc.description.abstract | 生物力學刺激在人體發育、成長與老化扮演相當重要的角色,正常的力學刺激可以增強人體骨骼的強度,然而不適當的力學刺激將會加速老化甚至引起許多相關疾病,以關節為例,髖關節發育不良是異常的力學刺激所造成的畸形關節發育病症,而軟骨受到過度的力學刺激甚至創傷時,會引發關節疼痛和功能障礙,引起退化性關節炎 (Osteoarthritis, OA) 等疾病。 這些疾病的產生,都與關節軟骨中異常的組織降解有關,其中Aggrecan被異常降解是這些疾病產生的主要原因之一。 正常狀態下,Aggrecan可以保護膠原蛋白不被降解,然而在異常的力學刺激下,Aggrecan的核心蛋白會被異常水解,導致第二型膠原蛋白失去Aggrecan的保護而進一步被水解,引起相關疾病,因此如欲完整了解這些疾病的成因,必須先了解Aggrecan降解的分子機制。 Aggrecan降解的重要區域為核心蛋白上位於G1和G2之間的區域,然而由於核心蛋白的分子結構尚未被完整解出,目前對於原子尺度下Aggrecan核心蛋白的降解機制仍不清楚。
本研究透過高速電腦所提供的計算能力,從原子尺度出發,以homology modeling的方法建立Aggrecan核心蛋白重要切割位點的分子模型,結合目前已知的蛋白水解酵素模型 (MMP-8),利用原子尺度計算研究蛋白水解酵素與核心蛋白的結合機制,並進一步探討Aggrecan降解的分子機制。 我們發現,在catalytic cleavage site附近的兩個關鍵殘基:位於P2'帶正電荷的精氨酸和位於P3'帶有小側鏈的甘氨酸,它們在MMP-8和peptide之間形成穩定的binding pose,這種穩定的binding pose對於催化裂解位點的發生起到相當重要的作用。 在potential cleavage site附近的殘基沒有這些特徵,導致在potential cleavage site附近的MMP-8和peptide之間的binding pose不穩定。 從binding affinity來看,我們發現MMP-8在catalytic cleavage site的binding affinity比potential cleavage site更好。 穩定地與Aggrecan核心蛋白的catalytic cleavage site結合,使MMP-8保持“active”狀態,進而才能水解特定位置Aggrecan的核心蛋白。 相反,與Aggrecan核心蛋白potential cleavage site的不穩定的結合使MMP-8保持“inactive”狀態。 我們的研究在原子尺度上解釋了catalytic cleavage site附近的殘基如何使其被MMP-8裂解的機理。 這項研究的結果將在分子水平上增進我們對Aggrecan核心蛋白降解機理的理解。 | zh_TW |
dc.description.abstract | Biomechanical forces play a critical role in our body. The musculoskeletal system generates, absorbs and transmits force, enabling the functional movement of our body. When trauma or excessive mechanical loading injures the articular cartilage, focal degradation of cartilage and remodeling of subchondral bone occur, resulting in joint pain and dysfunction, clinically identified as osteoarthritis (OA). These diseases are associated with abnormal degradation of the extracellular matrix in the articular cartilage. In the normal state, aggrecan can protect collagen from degradation. However, with the excessive mechanical loading, the core protein of aggrecan is hydrolyzed. It has been shown that the interglobular domain (IGD) of aggrecan core protein is highly sensitive to proteolysis. However, it is still not very clear about the degradation mechanism of aggrecan core protein at the molecular level.
This study takes an innovative in silico approach to investigate the mechanism of aggrecan core protein degradation at the molecular level. We construct the full atomistic models of aggrecan core protein near the cleavage site. We study the specific enzyme (MMP-8) to understand the molecular mechanism of aggrecan core protein degradation. We found that the two key residues in the vicinity of catalytic site, arginine in P2’ who is in positively charged and glycine P3’ with a small side chain, which play an important role in forming a stable binding pose between MMP-8 and peptide near the catalytic cleavage site. Without these characteristics of residue in the vicinity of potential cleavage site, resulting in unstable binding pose between MMP-8 and peptide near the potential cleavage site. Seen from binging affinity, we find that it is more difficult for peptide near the catalytic cleavage site to unbind from MMP-8. But for peptide near the potential cleavage site, it is relatively easier to unbind, which is considered that MMP-8 has a better binding affinity at catalytic cleavage site than potential cleavage site. Stably binding to the catalytic cleavage site of aggrecan core protein make MMP-8 stay in an “active” state, and then hydrolyze the scissile bond of aggrecan core protein. On the contrary, unstably binding to the potential cleavage site of aggrecan core protein make MMP-8 stay in an “inactive” state. Our study explains the catalytic mechanism of how residues at the vicinity of the catalytic cleavage site enable it to be cleaved by MMP-8 at the atomistic scale. We anticipate that the results of this study will advance our understandings of the degradation mechanism in aggrecan core protein at the molecular level. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T17:13:30Z (GMT). No. of bitstreams: 1 ntu-109-R06521248-1.pdf: 19846892 bytes, checksum: cda633fa519e2842ebfec2ab8b017fe6 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 ii Abstract iv 中文摘要 vi List of figures xi List of tables xx 1 Introduction 1 1.1 Background and objectives 1 1.2 Organization of the thesis 4 2 Literature review 5 2.1 Overview of cartilage materials 5 2.2 Structure of aggrecan molecules 8 2.3 Matrix metalloproteinases (MMPs) 10 2.4 A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) 15 2.5 Cartilage tissues degradation 18 3 Method 22 3.1 Atomic description of classical molecular dynamics 22 3.2 Newtonian dynamics 24 3.3 Force fields for biomaterials 26 3.4 Steered molecular dynamics simulation (SMD) 31 4 Effects of deformation rate on the unbinding pathway of the MMP8-Aggrecan_IGD complex in cartilage 33 4.1 Introduction 33 4.2 Computational details 37 4.3 Result and discussion 40 4.3.1 Molecular structure of the MMP8-Aggrecan_IGD complex 40 4.3.2 Effects of pulling velocity on the unbinding pathway 42 4.3.3 Effects of different force constant on the potential of mean force (PMF) 48 4.4 Summary 50 5 Molecular mechanism of biomaterials in cartilage: a bottom-up computational investigation of the aggrecan cleavage site 51 5.1 Introduction 51 5.2 Materials and Methods 53 5.2.1 Aggrecan interglobular domain sequences 53 5.2.2 Details of molecular dynamics simulation (MD) 54 5.2.3 Details of steered molecular dynamics simulation (SMD) 56 5.2.4 Potential of mean force (PMF) estimation 57 5.2.5 Dynamics cross correlation matrix (DCCM) 59 5.3 Results 60 5.3.1 Molecular binding between the catalytic enzyme and core protein 60 5.3.2 Unbinding mechanism of the MMP-8 and peptide complex 69 5.3.3 Potential of mean force (PMF) estimation at different sites 73 5.3.4 Dynamic cross-correlation matrix (DCCM) analysis at different sites 76 5.4 Summary 80 6 Conclusions and opportunities for future research 82 6.1 Summary of key findings and significances 82 6.2 Opportunities for future research 85 Reference 91 Journal paper published during the master’s study 111 | |
dc.language.iso | en | |
dc.title | 以原子尺度計算方法探討軟骨中蛋白聚糖降解的分子機制 | zh_TW |
dc.title | Molecular mechanism of cartilage — a bottom-up computational investigation of the aggrecan cleavage site | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張守一,陳柏宇 | |
dc.subject.keyword | 軟骨,組織降解,退化性關節炎,電腦模擬,蛋白分子結構, | zh_TW |
dc.subject.keyword | cartilage,aggrecan degradation,osteoarthritis,molecular dynamics,protein structure, | en |
dc.relation.page | 111 | |
dc.identifier.doi | 10.6342/NTU202000755 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-04-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 19.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。