Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63514
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃鼎偉(Ding-Wei Haung)
dc.contributor.authorSheng-Chieh Linen
dc.contributor.author林聖傑zh_TW
dc.date.accessioned2021-06-16T16:46:41Z-
dc.date.available2012-08-22
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citation1. Tawada, Y.O., H.; Hamakawa, Y, a‐SiC:H/a‐Si:H heterojunction solar cell having more than 7.1% conversion efficiency. Applied Physics Letters 1981. 39: pp. 237-239.
2. Green, M., Thin-film solar cells: review of materials, technologies and commercial status. Journal of Materials Science: Materials in Electronics, 2007. 18(0): pp. 15-19.
3. Chopra, K.L., Paulson, P. D. and Dutta, V. , Thin-film solar cells: an overview. Prog. Photovolt: Res., 2004. 12(2-3): pp. 69-92.
4. Ludovic Escoubas, J.-J.S., Philippe Torchio, David Duche, Sylvain Vedraine, Wilfried Vervisch, Judikael Le Rouzo, Francois Flory, Guillaume Riviere, Gizachew Yeabiyo, and Hassina Derbal, Bringing some photonic structures for solar cells to the fore. Applied Optics, 2011. Vol. 50(Issue 9): pp. C329-C339
5. Gratzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4(2): pp. 145-153.
6. Brillouin, L., Wave propagation in periodic structure, 1946: Mineola, New York.
7. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 1987. 58(20): pp. 2059-2062.
8. John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987. 58(23): pp. 2486-2489.
9. Ho, K.M., C.T. Chan, and C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Physical Review Letters, 1990. 65(25): pp. 3152-3155.
10. Allen Taflove, a.S.C.H., Computational Electrodyna- mics: The Finite-Difference Time-Domain Method, 2000, Artech House Publishers.
11. Pendry, J.B. and A. MacKinnon, Calculation of photon dispersion relations. Physical Review Letters, 1992. 69(19): pp. 2772-2775.
12. Zeng, L., et al., Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector. Applied Physics Letters, 2008. 93(22): pp. 221105-221105-3.
13. Rahul Dewan, M.M., Rodrigo Noriega, Sujay Phadke, Alberto Salleo, and Dietmar Knipp, Light trapping in thin-film silicon solar cells with submicron surface texture. Optics Express, 2009. Vol. 17(Issue 25): pp. 23058-23065
14. Andreas Bielawny, C.R., Falk Lederer, and Ralf B. Wehrspohn, Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem
88
cells. Optics Express, 2009. Vol. 17(Issue 10): pp. 8439-8446
15. Keppner, H., et al., Microcrystalline silicon and micromorph tandem solar cells. Applied Physics A: Materials Science & Processing, 1999. 69(2): pp. 169-177.
16. Katsuaki Tanabe1, A.F.i.M., Harry A. Atwater1, Daniel J. Aiken2, and Mark W. Wanlass3, Direct-bonded GaAs/InGaAs tandem solar cell Applied Physics Letters, 2006. 89(10):p.102106.
17. Tom Markvart, L.C., Solar Cells:Materials, Manufacture and Operation, 2005.
18. Yablonovich, E., Statistical ray optics. J. Opt. Soc. Am.,, 1982. 72: p. 899.
19. Yablonovich, E.a.C., G.C, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices, 1982. ED-29: p. 300.
20. 寸焕尧, 谭仁兵, 王荣丽, 柏晗, 张茜, 胡家光, 张晋, 用平面波展开法计算二维方形光子晶体的带隙结构. CHINESE JOURNAL OF SEMICONDUCTORS, 2006. 27:pp.64-67.
21. David L. Brundrett, E.N.G., and Thomas K. Gaylord, Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs. Applied Optics, 1994. 33(13): pp. 2695-2706
22. Berning P H., Theory and calculations of optical thin films. Physics of Thin Films Hass G, Editor(New York/ London: Academic Press) 1963: pp. 69-121.
23. Bielawny, A., Upping, J., Miclea, P. T., Wehrspohn, R. B., Rockstuhl, C., Lederer, F., Peters, M., Steidl, L., Zentel, R., Lee, S.-M., Knez, M., Lambertz, A. and Carius, R., 3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell. Phys. Status Solidi A, 2008. 205(12): pp. 2796-2810.
24. Mutitu, J.G., et al. Light trapping enhancement in thin silicon solar cells using photonic crystals. in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE. 2010:pp.2208-2212.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63514-
dc.description.abstract隨著溫室效應越來越嚴重,綠能已成為未來重要的議題之一,而其中太陽能電池具有非常大的潛力。第二代薄膜型太陽能電池改善了太陽能電池製造費用昂貴的問題,但也犧牲了光電轉換的效率。目前有許多針對第二代薄膜型太陽能電池的相關研究,不過還是有很多改進的地方。 有很多方法可以改善薄膜型太陽能電池的效率,使用串疊型太陽能電池可以將吸光效率提升至二到三倍甚至更高。本篇論文探討如何再進一步的提升串疊型太陽能電池的吸光效率。我們所模擬的對象為矽串疊型太陽能電池,其上主動層為氫化非晶矽、下主動層為氫化微晶矽,適當設計兩材料中間的反射層可提高矽串疊型太陽能電池的總體吸收效率。首先我們預想中間反射層的反射頻譜的形狀為帶通濾波器時會有很好的效果,經過模擬以後證實不但可以提升矽串疊型太陽能電池的效率還減少了上主動層的厚度。在實作結構中,我們選用光子晶體當作中間反射層,因為其具有類似帶通濾波器的反射頻譜。在本論文中我們探討了一維光子晶體和二維光子晶體對矽串疊型太陽能電池的影響。 在一維光子晶體方面,我們以多晶氧化鋅和單晶氧化鋅交疊成十週期的高低折射率堆疊結構來改善矽串疊型太陽能電池的效率。固定氫化微晶矽的厚度為1.5 μm,將一維光子晶體各層厚度及氫化非晶矽的厚度利用基因演算法做最佳化來求出最大的吸光效率。在二維光子晶體方面,我們將透明的導電層銦錫氧化物中間挖圓形的空氣柱形成二維週期折射率分布的結構。二維光子晶體的好處是可以形成更大的折射率反差而有更大頻寬及峰值的反射率頻譜,不過也會形成更大的波瓣。改良方法是在二維光子晶體後面加一層銦錫氧化物,調整其厚度可以降低波瓣。固定氫化微晶矽的厚度為1.5 μm,將二維光子晶體的週期及銦錫氧化物的厚度做最佳化來求出最大的吸光效率。 我們利用傳遞矩陣法模擬利用一維光子晶體和二維光子晶體提升矽串疊型太陽能電池的吸光效率。一維光子晶體最佳化後可以提升13.5%的效率。二維光子晶體可以提升13.4%。二維光子晶體還有一項優點,當入射光不是垂直入射時,使用二維光子晶體作中間反射層的矽串疊型太陽能電池吸光效率較一維光子晶體還高。本論文所提供的計算流程及方法不僅可以明顯的提升雙層串疊型太陽能電池的吸光效率,還可以推廣至三層或四層不同材料的組合上,因此有很大的應用價值。zh_TW
dc.description.abstractIn recent years, the green house effect has made the environment worse. Hence, the green energy became one of the most important issues. Solar energy is one of the most potential green energy. The 2nd generation thin-film solar cell solves the high-cost problem for the fabrication of conventional solar cells. However, the efficiency of the thin-film solar cells is still low. Even there are many research activities focusing on enhancing the efficiency of the thin film solar cells, it still can be improved. There are many ways to enhance the efficiency of thin-film solar cells. Using tandem solar cell structure, we can increase the absorptance of solar cell by 2 to 3 times or more. In this thesis, the enhancement of the efficiency of silicon tandem solar cells is studied. The top cell is a-Si:H and the bottom cell is μc-Si:H. A filter between these two materials is designed. From the simulation result, it is found that a band-pass filter can increase the aborptance of both the top and bottom cells. Besides, the thickness of the top cell can be reduced. Photonic crystals have the similar reflective spectrum as band-pass filter. In this study, 1D and 2D photonic crystals enhance the absorptance of silicon tandem solar cells are demonstrated. First, poly-ZnO and mono-ZnO are used as materials of 1D photonic crystals. There are one poly-ZnO layer and one mono-ZnO layer in a period and there are 10 periods in the simulation. Fixing the thickness of μc-Si:H as 1.5 μm, the thickness of 1D photonic crystals of all layers and a-Si:H are optimized by the genetic algorithm. Regarding 2D photonic crystals, using air cylinder within ITO, the contrast of the refractive indices is higher than 1D photonic crystals. This leads to wider and higher bandwidth in the reflection spectrum. However, the side-lobe is also high. To improve it, an ITO layer is added below the 2D photonic crystals. Similarly, fixing the thickness of μc-Si:H as 1.5 μm, the period of 2D photonic crystals and the thickness of a-Si:H are optimized. Besides, from the simulation result, 2D photonic crystals have better performance than 1D photonic crystals when the light is not normal incident.
The transfer matrix is used to simulate the enhancement of the efficiency of silicon tandem solar cells by 1D and 2D photonic crystals. With 1D photonic crystals, the efficiency of silicon tandem solar cell is increased by 13.5%. With 2D photonic crystals, the efficiency of silicon tandem solar cell is increased by 13.4%, but it still can be improved. The concept and process proposed in this thesis for enhancing the absorptance of silicon tandem solar cell can also be applied to the tandem solar cells with three or more layers and with different materials.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:46:41Z (GMT). No. of bitstreams: 1
ntu-101-R99941065-1.pdf: 38783563 bytes, checksum: 53973cbb873c0ac98eca0d71b9c1afc7 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents第一章緒論.................................................................................................................... 1
1.1 太陽能電池................................................................................................ 1
1.2 光子晶體.................................................................................................... 3
1.3 動機............................................................................................................ 4
第二章背景.................................................................................................................... 5
2.1 太陽能電池................................................................................................ 5
2.1.1 電流特性 ............................................................................................................. 5
2.1.2 量子效應及頻率響應 ......................................................................................... 8
2.2 光學特性.................................................................................................... 9
2.2.1 抗反射鍍膜 ......................................................................................................... 9
2.2.2 光捕捉效應 ....................................................................................................... 10
2.3 串疊型太陽能電池.................................................................................. 11
2.4 光子晶體.................................................................................................. 14
2.5 等效折射率.............................................................................................. 16
2.5.1 Homogeneous Layer Model .............................................................................. 17
第三 章模擬方法........................................................................................................ 20
3.1 馬克斯威爾方程式和平面波.................................................................. 20
3.2 波印廷向量( Poynting Vector) ................................................................ 21
3.3 單邊界的反射計算.................................................................................. 21
3.3.1 垂直入射之反射及透射 ................................................................................... 22
3.3.2 TM極化 ............................................................................................................ 23
3.3.3 TE極化 ............................................................................................................. 24
3.3.4 光導納(Optical Admittance) ............................................................................. 24
3.3.5 吸收介質的反射及透射 ................................................................................... 25
3.4 單層薄膜的反射計算.............................................................................. 26
3.5 傳遞矩陣法.............................................................................................. 28
3.5.1 多層膜的反射、透射及吸收 ........................................................................... 29
3.5.2 多層膜各層吸收率的計算 ............................................................................... 30
3.6 基因演算法.............................................................................................. 31
第四章 文獻回顧........................................................................................................ 35
第五章 結果與討論.................................................................................................... 38
V
5.1 未加中間反射層...................................................................................... 38
5.2 理想反射層.............................................................................................. 43
5.3 一維光子晶體.......................................................................................... 46
5.3.1 等光學厚度光子晶體 ....................................................................................... 46
5.3.2 改變光學厚度 ................................................................................................... 49
5.3.3 最佳化 ............................................................................................................... 52
5.4 二維光子晶體.......................................................................................... 56
5.4.1 降低波瓣 ........................................................................................................... 60
5.5 改變氫化微晶矽厚度.............................................................................. 64
第六章 結論與未來展望............................................................................................ 84
6.1 結論.......................................................................................................... 84
6.2 未來展望.................................................................................................. 85
參考文獻...................................................................................................................... 87
dc.language.isozh-TW
dc.subject串疊型太陽能電池zh_TW
dc.subject光子晶體zh_TW
dc.subjectTandem Solar Cellen
dc.subjectPhotonic crystalsen
dc.title利用光子晶體增加矽串疊型太陽能電池之效率zh_TW
dc.titleEnhancing the efficiency of silicon tandem solar cell by photonic crystalsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晃巖(Hoang-Yan Lin),魏培坤(Pei-Kuen We)
dc.subject.keyword串疊型太陽能電池,光子晶體,zh_TW
dc.subject.keywordTandem Solar Cell,Photonic crystals,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2012-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
37.87 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved