請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63506
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪振發 | |
dc.contributor.author | Chun-Kai Peng | en |
dc.contributor.author | 彭群凱 | zh_TW |
dc.date.accessioned | 2021-06-16T16:46:08Z | - |
dc.date.available | 2012-08-27 | |
dc.date.copyright | 2012-08-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-20 | |
dc.identifier.citation | [1] Hollyerand , R.S., 1959, Direct Shock-Wave Damage to Merchant Ships from Non-contact Under Water Explosions, SNAME, pp.773-784.
[2] Keil, A.H., 1961,The Response of Ship to Underwater Explosions, SNAME, pp. 366-410. [3] Taylor, G., 1963, The pressure and impulse of submarine explosion waves on plates. In: Batchelor G, editor. The scientific papers of Sir Geoffrey Ingram Taylor. Aerodynamics and the mechanics of projectiles and explosions, vol. III. Cambridge, UK: Cambridge University Press; p. 287–303. [4] Ramajeyathilagam, K; Vendhan , C.P.; Rao, V.B., 2000, Non-Linear Transient Dynamic Response of Rectangular Plates Under Shock Loading, International Journal of Impact Engineering, Vol.24, pp. 999 –1015 (2000). [5] Kambouchev , N; Noels, L; Radovitzky, R., 2006, Nonlinear compressibility effects in fluid–structure interaction and their implications on the air–blast loading of structures. J App Phys 2006;100 (063519):1–11. [6] Dawson, M.A., 2009, Composite plates with a layer of fluid-filled, reticulated foam for blast protection of infrastructure, International Journal of Impact Engineering , 36 (2009) 1288–1295. [7] Xue, Zhenyu; Hutchinson, John W., 2004, A comparative study of impulse-resistant matal sandwich plates. International Journal of Impact Engineering . Volume 30,Issue 10, 1283-1305. [8] 余孟泉,1998,船體受水下爆震衝擊之結構動態反應研究,臺灣大學造船及海洋工程學研究所碩士論文。 [9] 呂岳峰,2000,水下爆震三維船體顫震分析,臺灣大學造船及海洋工程學研究所碩士論文。 [10] 徐培譽,2004,水下爆震對結構之衝擊,臺灣大學造船及海洋工程學研究所博士論文 [11] Wu, Fuqiang; Spong, Robert; Wang, Ge , 2004 , Using Numerical Simulation to Analyze Ship Collision. ABS TECHNICAL PAPERS . ICCGS2004. [12] Tabri, Kristjan; Broekhuijsen, Joep; Matusiak, Jerzy; Varsta, Petri , 2009, Analytical modelling of ship collision based on full-scale experiments, Marine Structures 22 (2009) 42–61. [13] Tabri, Kristjan; Matusiak, Jerzy; Varsta, Petri, 2009, Sloshing interaction in ship collisions-An experimental and numerical study, Ocean Engineering, v 36, n 17-18, p 1366-1376. [14] Jones, N. ,1989, Structural Impact, Cambridge University Press. [15] 鄭貴華,2006,水下爆震對結構之衝擊,臺灣大學造船及海洋工程學研究所博士論文 [16] 林邦俊,2009,水下爆炸對結構之爆震反應,臺灣大學造船及海洋工程學研究所博士論文 [17] 洪振發,2006,國科會計畫,先進船用鋼三明治結構之抗撞與防震特性研究。 [18] 洪振發,2007~2010國科會計畫,不同型態船體鋼材三明治板結構之動態特性與抗 撞性能以及防爆功能研究。 [19] 洪振發,2011,船體雙層殼結構抗撞能力及抗爆性能之提昇研究(第一年期中報告),NSC99-2221-E-002-228-MY3 [20] 趙海鷗,2003,LS-DYNA動力分析指南,兵器工業出版社,北京 [21] LS-DYNA,2006,Keyword User's Manual Version 971,Livemore Software Technology Corporation. [22] Chen, Y.G.; Djidjeli, K.; Price, W.G., 2009, Numerical simulation of liquid sloshion phenomena in partially filled containers, Computers & Fluids ,38, 890-842. [23] Zhang, Ainian; Suzuki, Katsuyuki, 2007, A comparative study of numerical sumulations for fluid-structure interaction of liquid-fulled tank during ship collision, Ocean Engineering , 34, 645-652. [24] Tabri, Kristjan; Jukka, Määttänen; Janne, Ranta, 2008, Model-scale experiments of symmetric ship collisions , Journal of Marine Science and Technology, volume 13, number 1, pages 71-84. [25] Ozdemir, Z.; Souli, M.; Fahjan, Y.M., 2010, Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks, Engineering Structures, Engineering Structures 32 (2010) 409-423. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63506 | - |
dc.description.abstract | 傳統的船艦結構除特定目的油水艙採用雙層殼體外,一般採用單殼結構,而近年來海上汙染防護的要求,對於油輪與散裝貨輪有雙層殼之需求,另外雷射電焊技術的精進,使肋骨較大的單層殼結構可考慮改成重量較輕的三明治結構,其型態為深度較小的雙層殼結構。近年來隨著人們對船艦抗爆衝擊的重視,雙層殼結構的抗爆性能也受到關注。本文主要探討船體雙層殼結構不同流體充填狀態的抗爆震特性以及其遭受撞擊瞬間的衝擊性能研究,並檢討衝擊波在流體間的傳遞特性以及其抗爆特性。
本文主要先針對基本水槽受高速爆炸衝擊以及低速球艏撞擊進行數值衝擊分析以了解流固耦合之簡單水槽結構固體與槽內流體受衝擊之基本動態特性,並且了解不同流體充填狀態,流體所扮演的吸能、阻抗及能量重新分配的角色,最後針對可行之不同船體雙層殼結構不同流體充填狀況受爆震波衝擊之動態特性。 由充水雙層殼之水下爆炸分析,顯示充水相較於未充水抗爆震性能有提升之抗爆震能力之效果。充水雙層殼遭受球型艏撞擊分析,顯示撞擊瞬間雙層殼內充水具有明顯緩衝傷害之功能,此研究可應用於機艙段之油水艙間雙層殼結構之布置。 | zh_TW |
dc.description.abstract | The conventional ship structure is single hull in general, except of specified purpose, eq. water tank, oil tank etc. In recent years, the double hulls are taken into consideration in Bulk carriers and Tanker due to the protection of sea pollution after accident. Because of the development of laser welding technology, the metal sandwich structures have been proposed, and the traditional single hull structure can be replaced by smaller depth and lighter weight double hull. In recent years, people pay more attention to the anti-shock ability of ship. Accordingly, the anti-explosion performance in double hulls ship was concerned. In this research, the anti-shock property and the performance of reducing shock for double hulls with different fluid filled were studied, and the transfer mobility and anti-shock property of shock wave in fluid were discussed.
In this study, firstly, the simulation for high speed under water explosion and low speed impact in ship collision were analyzed in order to understand the fundamental dynamic property of fluid and structure coupling in simplified tank structure. Secondly, the function of absorption, impedance and energy resetting provided by fluid in different fluid filling cases were understood. Finally, the dynamic property in different fluid filling case was employed in different double hulls ship. The underwater shock analysis of double hulls filled with water shows that the water filling case has better effect on anti-shock than no water case. Moreover, the impact analysis of double hulls with water filling shows that the filling water in double hulls can provide a buffer to the damage at the impact moment which could be utilized in the layout of oil and water tank structure in the cabin. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:46:08Z (GMT). No. of bitstreams: 1 ntu-101-R99525064-1.pdf: 23714527 bytes, checksum: b7d10a21a6173354a63ed51201381745 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
致謝 i 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1研究動機與目的 1 1.2 文獻回顧 2 1.3本文內容 3 第二章 水下爆震相關理論 5 2.1 基本力學理論 5 2.1.1材料力學特性 5 2.1.2應變率對材料影響 6 2.1.3 von-mises降伏準則 7 2.2水下爆炸相關現象 7 2.2.1水下爆震波特性與推算 9 2.2.2最大半徑與周期推算 10 2.3有限元素法分析水下爆炸 12 2.3.1 水下爆炸對結構衝擊波壓簡易估算(LOAD_SSA) 12 2.3.2 水材料模型 13 2.4流固耦合 15 2.4.1Lagrange、Eulerian、ALE法 15 2.5龍骨爆震因子 17 第三章 水槽衝擊基本特性探討 20 3.1有限元素分析模型 21 3.2爆震波高速衝擊水槽 22 3.2.1分析模型邊界條件與負載 23 3.2.2分析結果與探討 26 3.2.3 小節討論 41 3.3類球型艏低速撞擊水槽 42 3.3.1分析模型邊界條件與負載 42 3.3.2分析結果與探討 43 3.3.3小節討論 48 第四章 充水雙層殼水下爆震與撞擊探討 49 4.1 充水肋板夾心雙層殼爆震探討 49 4.1.1有限元素分析模型 49 4.1.2 分析模型邊界與負載 51 4.1.3 分析結果與探討 54 4.1.4 小節討論 71 4.2充水格狀夾心雙層殼爆震探討 72 4.2.1有限元素分析模型 72 4.2.2 分析模型邊界與負載 73 4.2.3 分析結果與探討 76 4.2.4 小節討論 93 4.3充水肋板夾心雙層殼抗擊性能 94 4.3.1分析模型邊界條件 94 4.3.2 分析結果與探討 95 4.3.3 小節討論 101 第五章 結論 102 參考文獻 104 | |
dc.language.iso | zh-TW | |
dc.title | 充水雙層殼結構抗爆性能及抗撞能力研究 | zh_TW |
dc.title | Crashworthiness and Anti-Shock Performance of Water Filled Double Hull Structure | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱進東,孔慶華,梁卓中,周志明 | |
dc.subject.keyword | 充水雙層殼結構,水下爆炸,抗爆震能力,球艏撞擊,流固耦合, | zh_TW |
dc.subject.keyword | Water filled double hull,underwater explosion,anti-shock,ship collision,Fluid-structure interaction, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 23.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。