Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63487Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 吳育任 | |
| dc.contributor.author | Ming-Han Hsieh | en |
| dc.contributor.author | 謝明翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:44:58Z | - |
| dc.date.available | 2014-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-20 | |
| dc.identifier.citation | [1] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering. John Wiley and Sons Ltd, 2003.
[2] J. Singh, Electronic and Optielectronic Properties of Semiconductor Structure. Cambridge, 2007. [3] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of InGaN alloys: Fullsolar-spectrum photovoltaic material system,” Journal of Applied Physics, vol. 94, no. 10, pp. 6477–6482, 2003. [4] F. Dimroth and S. Kurtz, “High-efficiency multijunction solar cells,” MRS Bulletin, vol. 32, pp. 230–235, 2007. [5] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 37),” Progress in Photovoltaics: Research and Applications, vol. 19, no. 1, pp. 84–92, 2011. [6] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. John Wiley and Sons Ltd, 2007. [7] J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fa, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films, vol. 451–452, pp. 518 – 524, 2004. [8] R. A. Street, J. Kakalios, and M. Hack, “Electron drift mobility in doped amorphous silicon,” Phys. Rev. B, vol. 38, pp. 5603–5609, 1988. [9] M. Fleischer and H. Meixner, “Electron mobility in single and polycrystalline Ga2O3,” Journal of Applied Physics, vol. 74, no. 1, pp. 300–305, 1993. [10] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” Journal of Applied Physics, vol. 77, no. 2, pp. 686–693, 1995. [11] N. Serpone, D. Lawless, and R. Khairutdinov, “Size effects on the photophysical properties of colloidal anatase TiO2 particles:Size quantization versus direct transitions in this indirect semiconductor,”The Journal of Physical Chemistry, vol. 99, no. 45, pp. 16646–16654, 1995. [12] H. Snaith and M. Grtzel, “Electron and hole transport through mesoporous TiO2 infiltrated with spiro-meotad,” Advanced Materials, vol. 19, no. 21, pp. 3643–3647, 2007. [13] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. A. Khan, “Carrier mobility model for GaN,” Solid-State Electronics, vol. 47, no. 1, pp. 111–115, 2003. [14] H. J. Q. W. Shockley, “Detailed balance limit of efficiency of p-n junction solar cells,” Applied Physics Letters, vol. 32, pp. 510–519, 1961. [15] K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5% efficient GaInP/GaAs tandem solar cells,” Applied Physics Letters, vol. 65, no. 8, pp. 989–991, 1994. [16] A. Luque and A. Mart, “A metallic intermediate band high efficiency solar cell,” Progress in Photovoltaics: Research and Applications, vol. 9, no. 2, pp. 73–86, 2001. [17] R. D. Schaller and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion,” Phys. Rev. Lett., vol. 92, p. 186601, 2004. [18] J. F. Geisz, D. J. Friedman, J. S.Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Applied Physics Letters, vol. 93, no. 12, p. 123505, 2008. [19] L. Hsu and W.Walukiewicz, “Modeling of InGaN/Si tandem solar cells,” Journal of Applied Physics, vol. 104, no. 2, p. 024507, 2008. [20] T. D. Veal, P. H. Jefferson, L. F. J. Piper, C. F. McConville, T. B. Joyce, P. R. Chalker, L. Considine, H. Lu, and W. J. Schaff, “Transition from electron accumulation to depletion at InGaN surfaces,” Applied Physics Letters, vol. 89, no. 20, p. 202110, 2006. [21] S. Nakamura, M. Senoh, N. Iwasa, S. ichi Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantumwell-structure light-emitting diodes,” Japanese Journal of Applied Physics, vol. 34, no. Part 2, No. 10B, pp. L1332–L1335, 1995. [22] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, “Ultra-high efficiency white light emitting diodes,”Japanese Journal of Applied Physics, vol. 45, no. 41, pp. L1084–L1086, 2006. [23] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Applied Physics Letters, vol. 94, no. 6, p. 063505, 2009. [24] Y. Hu, R. M. Farrell, C. J. Neufeld, M. Iza, S. C. Cruz, N. Pfaff, D. Simeonov, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells,” Applied Physics Letters, vol. 100, no. 16, p. 161101, 2012. [25] H. Sato, A. Tyagi, H. Zhong, N. Fellows, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “High power and high efficiency green light emitting diode on freestanding semipolar (11‾22) bulk gan substrate,” physica status solidi (RRL)-Rapid Research Letters, vol. 1, no. 4, pp. 162–164, 2007. [26] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Japanese Journal of Applied Physics, vol. 36, no. Part 2, No. 4A, pp. L382–L385, 1997. [27] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained layer heterostructures,”Applied Physics Letters, vol. 47, no. 3, pp. 322–324, 1985. [28] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices,” Journal of Applied Physics, vol. 81, no. 9, pp. 6332–6338, 1997. [29] A. F. Wright, “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN,” Journal of Applied Physics, vol. 82, no. 6, pp. 2833–2839, 1997. [30] L. M. Fraas, G. R. Girard, J. E. Avery, B. A. Arau, V. S. Sundaram, A. G. Thompson, and J. M. Gee, “GaSb booster cells for over 30% efficient solar cell stacks,” Journal of Applied Physics, vol. 66, no. 8, pp. 3866–3870, 1989. [31] M. Yamaguchi, “III-V compound multi-junction solar cells:present and future,” Solar Energy Materials and Solar Cells, vol. 75, no. 1-2, pp. 261–269, 2003. [32] M. Yamaguchi, “Multi-junction solar cells and novel structures for solar cell applications,” Physica E: Low-dimensional Systems and Nanostructures, vol. 14, no. 1-2, pp. 84–90, 2002. [33] Y. R. Wu, M. Singh, and J. Singh, “Gate leakage suppression and contact engineering in nitride heterostructures,” Journal of Applied Physics, vol. 94, no. 9, pp. 5826–5831, 2003. [34] C. K. Li and Y. R. Wu., “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,”Electron Devices, IEEE Transactions on, vol. 59, no. 2, pp. 400–407, 2012. [35] D. Vasileska and S. M. Goodnick, Computational Electronics. Morgan & Claypool publishers, 2006. [36] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon pn junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, vol. 25, no. 5, pp. 676–677, 1954. 74 [37] J. Robertson and B. Falabretti, “Band offsets of high k gate oxides on III-V semiconductors,” Journal of Applied Physics, vol. 100, no. 1, p. 014111, 2006. [38] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, vol. 18, no. 3, pp. 1785–1791, 2000. [39] W.Walukiewicz, J. W. Ager, K. M. Yu, Z. Liliental-Weber, J.Wu, S. X. Li, R. E. Jones, and J. D. Denlinger, “Structure and electronic properties of InN and In-rich group III-nitride alloys,”Journal of Physics D: Applied Physics, vol. 39, no. 5, p. R83, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63487 | - |
| dc.description.abstract | 本篇論文主要在於探討氮化銦鎵/矽多接面堆疊太陽能電池,為
了研究多接面堆疊太陽能電池,我們發展了一個等效穿隧層模型來 模擬多接面堆疊太陽能電池。當我們想計算多接面堆疊太陽能電池 的電流電壓曲線時,我們必須先計算出在高濃度的電子和電洞區的 電流穿隧的機率,然而在波松方程式,電流飄移擴散方程式以及連 續方程式中並沒有包含計算穿隧機率的式子。因此我們假設在高濃 度的電子電洞區之間有一層虛擬的等效穿隧層,藉由調整等效穿隧 層的能隙及輻射耦合係數我們可以用來解釋曲線能階對穿隧機率的 影響。 此外我們也提出電子電洞阻擋層對於光伏元件的影響,我們討論 了在單接面的太陽能電池中,電子電洞阻擋層對於太陽能電池效率 的影響。根據我們的研究結果,完美的電子電洞阻擋層的確有機會 提升太陽能電池的開路電壓和短路電流,因此我們從文獻中選取氧 化鎵及氧化鈦作為矽太陽能電池的電子電洞阻擋層,模擬的結果顯 示有了電子電洞阻擋層太陽能電池的開路電壓可以從0.65伏特提升 到0.80伏特,短路電流可以從35.1毫安培/平方公分提升到35.9毫安 培/平方公分,效率可以從21.9%提升到27.6%。 最後我們利用以上的方法,討論氮化銦鎵/矽多介面堆疊太陽能電池。我們找出在雙接面以及三接面最佳的音的比例以及各層的厚 度,我們也發現當我們以氮面生長漸變的氮化銦鎵層時,在異質接 面上的極化電荷可以幫助載子流出元件並且形成電子阻擋層,模擬 的結果顯示效率可以從29.6%提升到33.4%。 | zh_TW |
| dc.description.abstract | This thesis studied silicon based InxGa1−xN multi-junction tandem solar cells. To investigate the the multi-junction tandem solar cells, we developed a simulation model by using 1D Poisson and drift-diffusion solver with an assumed effective tunneling layer. As we know, if we want to calculate the current-voltage curve, we have to calculate the
tunneling probability between the heavily doped n layer and p layer. However the 1D Poisson and drift-diffusion solver does not include the function to handle the tunneling current. Therefore, we assume that there is a virtual tunneling layer between the heavily doped n layer and p layer by changing the tunneling layer potential bandgap, recombination coefficient to explain influences of defect state level to the tunneling probability. Besides, we propose the concept of electron/hole blocking layer for the photovoltaic. We discusses the effect of electron/hole blocking layer on the photovoltaic performance of the single junction solar cells. The study shows that with a pure electron blocking on the p-type doping Si and a pure hole blocking layer on n-type doing, it is possible to enhance the open circuit voltage and short circuit current. Therefore, the Ga2O3 and TiO2 materials are chosen as the electron and hole blocking layer. The result shows that the open circuit voltage increases from 0.65 eV to 0.80 eV, and the short circuit current increases from 35.1 mA/cm2 to 35.9 mA/cm2 , where the power efficiency can increase from 21.9 % to 27.6 %. Finally, we use the above studies to investigate the performance of the silicon based InxGa1−xN multi-junction tandem solar cells. We find the optimized condition of the In composition and layer thickness of crystalline Si for the highest efficiency double-junction and triple-junction solar cells. After that, we analyzes the polarization effect on of the silicon based InxGa1−xN tandem junction solar cells with different top layer. Under the different InxGa1−xN growth face, the polarization charge at the heterojunction will induce different polarization field which can reduce or enhance the ability of the photo-generated holes collection. Making a great difference to the efficiency of the InxGa1−xN tandem junction solar cell. In our simulation, the graded InxGa1−xN tandem junction solar cells growth on the N-face can be the electron blocking layer which enhance the performance of the solar cells. The efficiency increases from 29.6% to 33.4%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:44:58Z (GMT). No. of bitstreams: 1 ntu-101-R99941116-1.pdf: 12210339 bytes, checksum: 4ffb5bb245164961d5a049dd84fb3d5b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審查表 . . . . . . . . . . . . . . . . . . . . . . i
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . ii 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . v 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . vii 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . x 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . xix 1 Introduction . . . . . . . . . . . . . . . . . . . . . . .1 1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . .1 1.2 Fundamental Physics of Solar Cell . . . . . . . . . . . 2 1.3 Characteristics of the InxGa1−xN Material system . . . .5 1.3.1 The strain and polarization effect . . . . . . . . . .5 1.3.2 The advantages and disadvantages of the InxGa1−xN material system . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Overview of the Multi-junction tandem solar cells . . .12 1.5 Tunnel Probability and Tunnel Current . . . . . . . . .15 1.6 Motivation . . . . . . . . . . . . . . . . . . . . . . 19 2 Formalism . . . . . . . . . . . . . . . . . . . . . . . .21 2.1 Drift-Diffusion Charge Control model . . . . . . . . . 21 2.2 The Simulation Model for Tandem Junction Solar Cell with an Assumed Effective Tunneling Layer . . . . . . . . .25 2.2.1 Details of the Effective Tunneling Layer Model . . . 26 2.2.2 The Effect of the Material Parameter of the Tunneling Layer on the I-V Curve . . . . . . . . . . . . . . . . . . 27 3 The Effect of Tailoring Electron/Hole Blocking Layers on the Photovoltaic Performance of the Single Junction Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . .32 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 32 3.2 The Perfect Electron/Hole Blocking Layer . . . . . . . 34 3.3 Using the Ga2O3/TiO2 as the Electron/Hole Blocking Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 3.4 The Superlattice Electron/Hole Bloking Layer . . . . . 39 4 Numerical Modeling of InxGa1−xN Silicon Multi-Junction Tandem Solar Cell . . . . . . . . . . . . . . . . . . . . .45 4.1 The silicon based InxGa1−xN double-junction tandem solar cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 The silicon based InxGa1−xN triple-junction tandem solar cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Optimization of the InxGa1−xN/ Silicon Tandem junction Solar Cells with the polarization effect and the electron blocking layer . . . . . . . . . . . . . . . . . . . . . . 56 5.1 The polarization effect on the InxGa1−xN/ Silicon Tandem junction Solar Cells . . . . . . . . . . . . . . . . . . . 56 5.1.1 Influence of p-GaN cap layer . . . . . . . . . . . . 57 5.2 The graded Ga-faced p-GaN/i-InxGa1−xN top layer tandem solar cell . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3 The grade N-faced pGaN-InGaN top cap layer . . . . . . 62 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 66 Bibliography . . . . . . . . . . . . . . . . . . . . . . . 68 | |
| dc.language.iso | en | |
| dc.subject | 矽 | zh_TW |
| dc.subject | 氮化銦鎵 | zh_TW |
| dc.subject | 多接面堆疊太陽能電池 | zh_TW |
| dc.subject | Multi-junction tandem solar cell | en |
| dc.subject | InGaN | en |
| dc.subject | Silicon | en |
| dc.title | 氮化銦鎵/矽多接面堆疊太陽能電池數值模擬與結構最佳化 | zh_TW |
| dc.title | Numerical Modeling and Optimization of InxGa1−xN Silicon
Multi-Junction Tandem Solar Cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余沛慈,陳奕君,彭隆瀚 | |
| dc.subject.keyword | 氮化銦鎵,矽,多接面堆疊太陽能電池, | zh_TW |
| dc.subject.keyword | InGaN,Silicon,Multi-junction tandem solar cell, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 11.92 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
