Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63483
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王倫(Lon A. Wang)
dc.contributor.authorYi-Chang Hsiehen
dc.contributor.author謝佾錩zh_TW
dc.date.accessioned2021-06-16T16:44:43Z-
dc.date.available2014-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-20
dc.identifier.citation[1] F. Xu, P. Horak, and G. Brambilla, 'Optical microfiber coil resonator refractometric sensor,' Optics Express, vol. 15, pp. 7888-7893, Jun 11 2007.
[2] G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, 'Optical microfiber mode interferometer for temperature-independent refractometric sensing,' Optics Letters, vol. 37, pp. 1974-1976, Jun 1 2012.
[3] L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, and L. M. Tong, 'Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,' Optics Express, vol. 16, pp. 13349-13353, Aug 18 2008.
[4] Y. Wu, L. Jia, T. H. Zhang, Y. J. Rao, and Y. Gong, 'Microscopic multi-point temperature sensing based on microfiber double-knot resonators,' Optics Communications, vol. 285, pp. 2218-2222, Apr 15 2012.
[5] M. Sumetsky, 'Optical fiber microcoil resonator,' Optics Express, vol. 12, pp. 2303-2316, May 17 2004.
[6] Marcatil.Ea, 'Bends in Optical Dielectric Guides,' Bell System Technical Journal, vol. 48, pp. 2103-&, 1969.
[7] M. Sumetsky, 'Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators,' Journal of Lightwave Technology, vol. 26, pp. 21-27, Jan-Feb 2008.
[8] F. Xu and G. Brambilla, 'Manufacture of 3-D microfiber coil resonators,' Ieee Photonics Technology Letters, vol. 19, pp. 1481-1483, Sep-Oct 2007.
[9] F. Xu, P. Horak, and G. Brambilla, 'Optimized design of microcoil resonators,' Journal of Lightwave Technology, vol. 25, pp. 1561-1567, Jun 2007.
[10] F. Xu and G. Brambilla, 'Embedding optical microfiber coil resonators in Teflon,' Optics Letters, vol. 32, pp. 2164-2166, Aug 1 2007.
[11] Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, 'Embedded Optical Microfiber Coil Resonator With Enhanced High-Q,' Ieee Photonics Technology Letters, vol. 22, pp. 1638-1640, Nov 15 2010.
[12] T. Lee, N. G. R. Broderick, and G. Brambilla, 'Berry phase magnification in optical microcoil resonators,' Optics Letters, vol. 36, pp. 2839-2841, Aug 1 2011.
[13] T. Lee, N. G. R. Broderick, and G. Brambilla, 'Transmission properties of microcoils based on twisted birefringent fibre,' Optics Communications, vol. 284, pp. 1837-1841, Apr 1 2011.
[14] M. Sumetsky, 'Optical microfiber coil delay line,' Optics Express, vol. 17, pp. 7196-7205, Apr 27 2009.
[15] G. Y. Chen, X. L. Zhang, G. Brambilla, and T. P. Newson, 'Theoretical and experimental demonstrations of a microfiber-based flexural disc accelerometer,' Optics Letters, vol. 36, pp. 3669-3671, Sep 15 2011.
[16] M. Belal, Z. Song, Y. Jung, G. Brambilla, and T. P. Newson, 'Optical fiber microwire current sensor,' Optics Letters, vol. 35, pp. 3045-3047, Sep 15 2010.
[17] R. Lorenzi, Y. M. Jung, and G. Brambilla, 'In-line absorption sensor based on coiled optical microfiber,' Applied Physics Letters, vol. 98, Apr 25 2011.
[18] J. Scheuer, 'Fiber microcoil optical gyroscope,' Optics Letters, vol. 34, pp. 1630-1632, Jun 1 2009.
[19] M. J. F. Digonnet, 'Rotation Sensitivity of Gyroscopes Based on Distributed-Coupling Loop Resonators,' Journal of Lightwave Technology, vol. 29, pp. 3048-3053, Oct 15 2011.
[20] X. L. Zhang, M. Belal, G. Y. Chen, Z. Q. Song, G. Brambilla, and T. P. Newson, 'Compact optical microfiber phase modulator,' Optics Letters, vol. 37, pp. 320-322, Feb 1 2012.
[21] R. Ismaeel, T. Lee, F. Al-Saab, Y. M. Jung, and G. Brambilla, 'A self-coupling multi-port microcoil resonator,' Optics Express, vol. 20, pp. 8568-8574, Apr 9 2012.
[22] A. W. Snyder, 'Coupled-Mode Theory for Optical Fibers,' Journal of the Optical Society of America, vol. 62, pp. 1267-1277, 1972.
[23] M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, 'Rayleigh scattering in high-Q microspheres,' Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1051-1057, Jun 2000.
[24] S. M. Chuo and L. A. Wang, 'Propagation loss, degradation and protective coating of long drawn microfibers,' Optics Communications, vol. 284, pp. 2825-2828, Jun 1 2011.
[25] Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, 'Compact optical short-pass filters based on microfibers,' Optics Letters, vol. 33, pp. 2565-2567, Nov 1 2008.
[26] M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, 'Optical microfiber loop resonator,' Applied Physics Letters, vol. 86, Apr 18 2005.
[27] M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, 'The microfiber loop resonator: Theory, experiment, and application,' Journal of Lightwave Technology, vol. 24, pp. 242-250, Jan 2006.
[28] M. Sumetsky, Y. Dulashko, and S. Ghalmi, 'Fabrication of miniature optical fiber and microfiber coils,' Optics and Lasers in Engineering, vol. 48, pp. 272-275, Mar 2010.
[29] S. S. Pal, S. K. Mondal, U. Tiwari, P. V. G. Swamy, M. Kumar, N. Singh, P. P. Bajpai, and P. Kapur, 'Etched multimode microfiber knot-type loop interferometer refractive index sensor,' Review of Scientific Instruments, vol. 82, Sep 2011.
[30] A. Suzuki and S. Narusue, 'Isotactic polypropylene microfiber prepared by carbon dioxide laser-heating,' Journal of Applied Polymer Science, vol. 92, pp. 1534-1539, May 5 2004.
[31] G. Sagnac, 'Opposite superposed beams of light interferometer, giving a narrow central fringe with a sensitive shade and narrow coloured white interval fringes in a polarised white light.,' Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, vol. 150, pp. 1676-1679, 1910.
[32] H. J. Arditty and H. C. Lefevre, 'Sagnac Effect in Fibr Gyroscopes,' Optics Letters, vol. 6, pp. 401-403, 1981.
[33] C. X. Shi, T. Yuhara, H. Iizuka, and H. Kajioka, 'Proposal of a Novel Interferometric Fiberoptic Gyroscope,' Microwave and Optical Technology Letters, vol. 9, pp. 221-224, Jul 1995.
[34] S. Ezekiel and S. R. Balsamo, 'Passive Ring Resonator Laser Gyroscope,' Applied Physics Letters, vol. 30, pp. 478-480, 1977.
[35] H. Mao, H. L. Ma, and Z. H. Jin, 'Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,' Optics Express, vol. 19, pp. 4632-4643, Feb 28 2011.
[36] G. Brambilla, 'Optical fibre nanowires and microwires: a review,' Journal of Optics, vol. 12, Apr 2010.
[37] W. M. Macek and D. T. M. Davis, 'Rotation Rate Sensing with Traveling-Wave Ring Lasers,' Applied Physics Letters, vol. 2, pp. 67-68, 1963.
[38] X. L. Zhang, H. L. Ma, Z. H. Jin, and C. Ding, 'Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique,' Applied Optics, vol. 45, pp. 7961-7965, Nov 1 2006.
[39] K. Iwatsuki, K. Hotate, and M. Higashiguchi, 'Effect of Rayleigh Backscattering in an Optical Passive Ring-Resonator Gyro,' Applied Optics, vol. 23, pp. 3916-3924, 1984.
[40] Y. Ren, Z. H. Jin, Y. Chen, and H. L. Ma, 'Optimization of the resonant frequency servo loop technique in the resonator micro optic gyro,' Journal of Zhejiang University-Science C-Computers & Electronics, vol. 12, pp. 942-950, Nov 2011.
[41] J. R. Haavisto, 'Thin-Film Waveguides for Inertial Sensors,' Proceedings of the Society of Photo-Optical Instrumentation Engineers, vol. 412, pp. 221-228, 1983.
[42] Z. H. Jin, G. H. Zhang, H. Mao, and H. L. Ma, 'Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor,' Optics Communications, vol. 285, pp. 645-649, Mar 1 2012.
[43] S. L. Jones, G. Murtaza, J. M. Senior, and N. Haigh, 'Single-mode optical fiber microbend loss modeling using the finite difference beam propagation method,' Optical Fiber Technology, vol. 4, pp. 471-479, Oct 1998.
[44] G. Brambilla, V. Finazzi, and D. J. Richardson, 'Ultra-low-loss optical fiber nanotapers,' Optics Express, vol. 12, pp. 2258-2263, May 17 2004.
[45] M. Fujiwara, K. Toubaru, and S. Takeuchi, 'Optical transmittance degradation in tapered fibers,' Optics Express, vol. 19, pp. 8596-8601, Apr 25 2011.
[46] M. Sumetsky, 'How thin can a microfiber be and still guide light?,' Optics Letters, vol. 31, pp. 870-872, Apr 1 2006.
[47] C. Y. Chao and L. J. Guo, 'Design and optimization of microring resonators in biochemical sensing applications,' Journal of Lightwave Technology, vol. 24, pp. 1395-1402, Mar 2006.
[48] L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, 'Simulation of optical microfiber loop resonators for ambient refractive index sensing,' Sensors, vol. 7, pp. 689-696, May 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63483-
dc.description.abstract在本論文中,我們建造了一個品質因素達到470,000的微光纖線圈共振腔。
實驗以及模擬的結果都指出當微光纖線圈共振腔纏繞的圈數增加時,即使是線圈中每一圈的間距並不全都相同,只要能將圈與圈的間距控制在1.5 μm的範圍之內,共振腔平均的品質因素將會隨著圈數增加而增大。比較先前的研究結果,多圈的微光纖線圈共振腔提供了另一個製作高品質因素的微光纖共振腔的新選擇。
此外,本論文也對微光纖線圈共振腔在光纖陀螺儀的應用以及折射率感測的應用上進行可行性分析。在光纖陀螺儀方面,我們證實了其最小可感測轉速與共振腔的品質因素是正相關的。若將我們的微光線線圈共振腔應用在光纖陀螺儀的系統上,我們預期可以最小可量測轉速理論可達0.1°/s。在折射率感測方面,模擬的結果指出雖然提升微光纖線圈共振腔的品質因素對提升折射率的靈敏度是沒有幫助的,但是可以提升可量測的折射率變化的極限,對於一個品質因素達到470,000的微光纖線圈共振腔,我們估計其可量測的最小折射率變化為3×10-6 RIU。
zh_TW
dc.description.abstractMicrofiber coil resonators (MCRs) with quality factors as high as ~470,000 were fabricated and characterized. Both simulated and experimental results showed that the average quality factor of the resonant dips increased with the number of rings, providing a proof of the dependence of increasing quality factor upon the number of rings even when the gaps among adjacent rings were not strictly uniform but need to be controlled within 1.5 μm. Compared with the previous reports, a multi-ring MCR can thus offer a new method of obtaining a microfiber resonator with high quality factor. Furthermore, the feasibility studied of both the MCR-based gyroscope and the refractive index sensors were also studied. For our MCR-based gyroscope, we proved the sensitivity is related to the quality factor of MCR and estimated the minimum detectable rotation rate is about 0.1°/s. For the MCR-based refractive index sensor, high quality factor of an MCR could enhance the detection limit. For the MCR with quality factor of 470,000, we estimated its detection limit was about 3×10-6 RIU.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:44:43Z (GMT). No. of bitstreams: 1
ntu-101-R98941096-1.pdf: 3179436 bytes, checksum: fc0d908ec1fa67413f81c466eeb61020 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 i
中文摘要 iii
ABSTRACT v
LIST OF PUBLICATIONS vii
STATEMENT OF CONTRIBUTIONS ix
CONTENTS xi
LIST OF FIGURES xiii
LIST OF ABBREVIATIONS xix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Introduction of Microfiber Coil Resonators and Its Literature Review 2
1.3 Organization of The Thesis 8
Chapter 2 Principle, Design and Simulated Results of MCR 9
2.1 Theory 9
2.2 Quality Factors of Resonators 12
2.3 Design and Simulated Results of MCR 14
2.3.1 Round Trip Loss of MCR and Short-Pass Effect in Optical Spectrum 15
2.3.2 Average Coupling Parameter of MCR 20
2.3.3 The Number of Rings of MCR 27
2.4 Summary 32
Chapter 3 Fabrication and Experimental Results of MCR 33
3.1 Fabrication of MCR 33
3.1.1 Fabrication of microfibers 34
3.1.2 Coiling Process of MCR 39
3.2 Optical Characteristics of MCR 44
3.2.1 In-situ Measurement of MCR 44
3.2.2 Dependence of Number of Rings and Quality Factor 47
3.3 Summary 52
Chapter 4 Applications of MCR and their feasibility studies 53
4.1 Introduction of R-FOG and MFOG 54
4.2 Experimental Results and Feasibility Study of MFOG 62
4.2.1 Experimental Results 62
4.2.2 Feasibility Studies of MFOG 74
4.3 Feasibility Studies of MCR in Biomedical Applications 78
4.4 Summary 84
Chapter 5 Conclusions and Future Works 85
Reference 87
dc.language.isozh-TW
dc.subject光纖陀螺儀zh_TW
dc.subject微光纖線圈共振腔zh_TW
dc.subject品質因素zh_TW
dc.subject光纖陀螺儀zh_TW
dc.subject微光纖線圈共振腔zh_TW
dc.subject品質因素zh_TW
dc.subjectMicrofiber Coil Resonatorsen
dc.subjectFiber-Optics Gyroscopeen
dc.subjectQuality Factoren
dc.title利用增加繞線圈數製作具有高品質因素的微光纖線圈共振腔及其應用zh_TW
dc.titleFabrication and Applications of Microfiber Coil Resonators with Enhanced Quality Factors by Increasing Coil Numbersen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉文豐(Wen-Fung Liu),陳南光(Nan-Kuang Chen),李百祺(Pai-Chi Li)
dc.subject.keyword微光纖線圈共振腔,品質因素,光纖陀螺儀,zh_TW
dc.subject.keywordMicrofiber Coil Resonators,Quality Factor,Fiber-Optics Gyroscope,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2012-08-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved