請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63481完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張鎮華 | |
| dc.contributor.author | Shao-Tang Liao | en |
| dc.contributor.author | 廖紹棠 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:44:36Z | - |
| dc.date.available | 2013-08-27 | |
| dc.date.copyright | 2012-08-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-21 | |
| dc.identifier.citation | References
[1] L.D. Andersen. The strong chromatic index of a cubic graph is at most 10. Discrete Math., 108:231 252, 1992. [2] K. Appel and W. Haken. Every planar map is four colorable. Part I. Discharging. Illinois J. Math., 21:429 490, 1977. [3] K. Appel and W. Haken. Every planar map is four colorable. Part II. Reducibility Illinois J. Math., 21:491 567, 1977. [4] C.L. Barrett, G. Istrate, V.S.A. Kumar, M.V. Marathe, S. Thite, and S. Thulasidasan. Strong edge coloring for channel assignment in wireless radio networks. In Proceedings of the 4th Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 106 110, 2006. [5] N. Biggs. Some odd graph theory. Annals New York Academy of Sciences, 71 81, 1979. [6] O. V. Borodin. Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra. (Russian. Russian summary) Diskretn. Anal. Issled. Oper. Ser. 19(3):29 39, 2002. [7] G.J. Chang and D.D.-F. Liu, Strong edge-coloring for cubic Halin graphs. Discrete Math., 312:1468 1475, 2012. [8] D.W. Cranston. Strong edge-coloring of graphs with maximum degree 4 using 22 colors. Discrete Math., 306(21):2772 2778, 2006. 8 [9] P. ErdRs, Problems and results in combinatorial analysis and graph theory. Discrete Math., 72:81 92, 1988. [10] P. ErdRs and J. Ne2et°il, [Problem]. In: G. Halasz and V. T. Sos (eds.), Irregularities of Partitions, Springer, Berlin, 162 163, 1989. [11] R.J. Faudree, A. Gyarfas, R.H. Schelp, and Zs. Tuza. The strong chromatic index of graphs. Ars Combinatoria, 29B:205 211, 1990. [12] J.L. Fouquet and J.L. Jolivet. Strong edge-coloring of graphs and applications to multi-k-gons. Ars Combinatoria, 16:141 150, 1983. [13] J.L. Fouquet and J.L. Jolivet, Strong edge-coloring of cubic planar graphs. Progress in Graph Theory (Waterloo 1982), 1984, 247 264. [14] H. Grotzsch. Ein dreifarbensatz fur dreikreisfreie netze auf der kugel. Math.-Nat. Reihe, 8:109 120, 1959. [15] P. Horak, The strong chromatic index of graphs with maximun degree four, Contemp. Methods Graph Theory, 1990, 399 403. [16] H. Hocquard, P. Ochem, and P. Valicov. Strong edge coloring and induced matchings. LaBRI Research Report, http://hal.archives-ouvertes.fr/hal-00609454_v1, 2011. [17] P. Horak, H. Qing, and W.T. Trotter. Induced matchings in cubic graphs. J. Graph Theory, 17:151 160, 1993. [18] H.-H. Lai, K.-W. Lih, and P.-Y. Tsai, The strong chromatic index of Halin graphs. Discrete Math., 312:1536 1541, 2012. [19] K.-W. Lih and D.D.-F. Liu, On the strong chromatic index of cubic Halin graphs. Appl. Math. Lett., 25:898 901, 2012. [20] M. Mahdian. The Strong Chromatic Index of Graphs. Master Thesis, University of Toronto, Canada, 2000. [21] M. Molloy and B. Reed. A bound on the strong chromatic index of a graph. J. Combin. Theory, Series B, 69(2):103 109, 1997. [22] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan. Achieving MAC layer fairness in wireless packet networks. In Proc. 6th ACM Conf. on Mobile Computing and Networking, 87 98, 2000. [23] S. Ramanathan. A uni ed framework and algorithm for (T/F/C) DMA channel assignment in wireless networks. In: Proc. IEEE INFOCOM 7, 900 907, 1997. [24] S. Ramanathan and E.L. Lloyd. Scheduling algorithms for multi-hop radio networks. IEEE/ACM Trans. Networking, 2:166 177, 1993. 9 [25] W.C. Shiu, P.C.B. Lam and W.K. Tam, On strong chromatic index of Halin graphs. J. Combin. Math. Combin. Comput., 57:211 222, 2006. [26] W.C. Shiu and W.K. Tam, The strong chromatic index of complete cubic Halin graphs. Appl. Math. Lett., 22:754 758, 2009. [27] V.G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz., 3:25 30, 1964. [28] V.G. Vizing. Critical graphs with given chromatic class. Metody Diskret. Analiz., 5:9 17, 1965. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63481 | - |
| dc.description.abstract | 一個圖G的強邊著色,是表示對圖G當中的邊的一個著色,使得距離不大於2的兩條邊都著不一樣的顏色。一個圖G的強邊著色數,以 χ_s'(G) 表示,則是在圖G的所有強邊著色中,所需要的最少顏色數。對於圖G,定義σ(G)是對於所有G當中的邊uv來說,(u的度數+v的度數-1)所可能達到的最大值。
一個仙人掌圖是表示一個圖當中的所有區塊都是一條邊或者一個圈的連通圖。在這篇論文中,我們研究仙人掌圖的強邊著色數。特別地,如果仙人掌圖G當中的每一個圈的長度都是6的倍數,則該圖的強邊著色數會等於σ(G);如果仙人掌圖G當中的每一個圈的長度都是偶數,則該圖的強邊著色數會等於σ(G) 或者σ(G)+1。對於C5以外的一般仙人掌圖G,我們則有 χ_s'(G) ≤ ⌊(3σ(G)-1)/2⌋ 。 關鍵字:強邊著色數、仙人掌圖、圈、度數 | zh_TW |
| dc.description.abstract | A strong edge coloring of a graph G is an assignment of colors to the edges of G such that two distinct edges are colored differently if their distance is at most two. The strong chromatic index of a graph G, denoted by χ'_s(G) , is the minimum number of colors needed for a strong edge coloring of G. For a graph G, define σ(G)=〖max〗┬(uv∈E(G))〖(d_G (u)+d_G (v)-1)〗, where d_G (x) is the degree of x. A cactus is a connected graph in which every block is an edge or a cycle. In this thesis, we study strong chromatic edge coloring for cacti. In particular, it is proved that for any cactus G, we have χ_s'(G) = σ(G) if the length of any cycle is a multiple of 6; χ_s'(G) ≤ σ(G)+1 if the length of any cycle is even; and χ_s'(G) ≤ ' ⌊(3σ(G)-1)/2⌋ in general except the case G = C5.
Keywords: strong chromatic index, cactus, cycle, degree | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:44:36Z (GMT). No. of bitstreams: 1 ntu-101-R97221052-1.pdf: 459618 bytes, checksum: f603b1f6652da8d63cb2087c17e6e503 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Contents iv 1. Introduction 1 Conjecture 1 2 2. Main Results 3 Theorem 1 Strong Chromatic Index of a Tree 4 Theorem 2 Strong Chromatic Index of Cactus Graph (1) 4 Theorem 3 Strong Chromatic Index of Cactus Graph (2) 5 Theorem 4 Strong Chromatic Index of Cactus Graph (3) 6 References 8 | |
| dc.language.iso | zh-TW | |
| dc.subject | 仙人掌圖 | zh_TW |
| dc.subject | 強邊著色數 | zh_TW |
| dc.subject | 圈 | zh_TW |
| dc.subject | 度數 | zh_TW |
| dc.subject | strong chromatic index | en |
| dc.subject | cycle | en |
| dc.subject | degree | en |
| dc.subject | cactus | en |
| dc.title | 仙人掌圖的強邊著色數 | zh_TW |
| dc.title | The Strong Chromatic Index of Cacti | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏經國,郭大衛 | |
| dc.subject.keyword | 強邊著色數,仙人掌圖,圈,度數, | zh_TW |
| dc.subject.keyword | strong chromatic index,cactus,cycle,degree, | en |
| dc.relation.page | 10 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 448.85 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
