Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林曉武(Saulwood Lin)
dc.contributor.authorChieh-Wei Hsuen
dc.contributor.author許介瑋zh_TW
dc.date.accessioned2021-06-16T16:43:47Z-
dc.date.available2015-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-21
dc.identifier.citation中文部分
楊燦堯 (2010) 台灣西南海域天然氣水合物賦存區地質調查研究海域地質調查與地球化學探勘(3/4)台灣西南海域海水與沈積物之氣體化學組成。中央地質調查所報告第99-30-F號。
劉家瑄 (2010) Marion Dufresne 178航次航後報告:地球物理調查與航次作業紀錄。
英文部分
Aharon, P. and Fu, B., 2003. Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chemical Geology, 195(1-4): 201-218.
Aharon, P. and Fu, B.S., 2000. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochimica Et Cosmochimica Acta, 64(2): 233-246.
Berg, P., Risgaard-Petersen, N. and Rysgaard, S., 1998. Interpretation of measured concentration profiles in sediment pore water. Limnology and Oceanography, 43(7): 1500-1510.
Berner, R.A., 1970. Sedimentary pyrite formation. American Journal of Science, 268(1): 1-23.
Berner, R.A., 1978. Sulfate reduction and the rate of deposition of marine sediments. Earth and Planetary Science Letters, 37(3): 492-498.
Berner, R.A., 1982. Burial of organic-carbon and pyrite sulfur in the modern ocean - its geochemical and environmental significance. American Journal of Science, 282(4): 451-473.
Borowski, W.S., Paull, C.K. and Ussler, W., 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24(7): 655-658.
Borowski, W.S., Paull, C.K. and Ussler, W., 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Marine Geology, 159(1-4): 131-154.
Bottrell, S.H. and Raiswell, R., 2000. Sulphur Isotopes and Microbial Sulphur Cycling in Sediments. R.E Riding, M Awramik (Eds.), Microbial Sediments, Springer-Verlag, Berlin: 96-104.
Bouderau, B.P., 1997. Diagenetic Models and Their Impletation: Modeling Transport and Reactions in Aquatic Sediments. Springer, Berlin, Heidelberg, NY: 414.
Canfield, D.E., 1993. Organic matter oxidation in marine sediments. Wollast, R., Mackenzie, F.T., and Chou, L. (Eds), Biogeochemical Cycles and Global Change. Springer, Berlin: 333-363.
Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M. and Berner, R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54(1-2): 149-155.
Canfield, D.E. and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382(6587): 127-132.
Chuang, P.-C., Yang, T.F., Lin, S., Lee, H.-F., Lan, T.F., Hong, W.-L., Liu, C.-S., Chen, J.-C. and Wang, Y., 2006. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 17(4): 903-920.
Chuang, P.C., Yang, T.F., Hong, W.L., Lin, S., Sun, C.H., Lin, A.T.S., Chen, J.C., Wang, Y. and Chung, S.H., 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10(4): 497-510.
Cline, J.D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14(3): 454-&.
Cornwell, J.C. and Morse, J.W., 1987. The characterization of iron sulfide minerals in anoxic marine-sediments. Marine Chemistry, 22(2-4): 193-206.
Criss, R.E., 1999. Principles of Stable Isotope Distribution. Oxford University, New York, 254pp. Oxford University, New York. 254pp.
Dickens, G.R., 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochimica Et Cosmochimica Acta, 65(4): 529-543.
Goldhaber, M.B. and Kaplan, I.R., 1974. The sulfer cycle. The Sea, E.D. Goldberg, ed. John Wiley Inc., 5(569-665).
Habicht, K.S. and Canfield, D.E., 2001. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology, 29(6): 555.
Habicht, K.S., Canfield, D.E. and Rethmeier, J., 1998. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica Et Cosmochimica Acta, 62(15): 2585-2595.
Hensen, C., Zabel, M., Pfeifer, K., Schwenk, T., Kasten, S., Riedinger, N., Schulz, H.D. and Boettius, A., 2003. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochimica Et Cosmochimica Acta, 67(14): 2631-2647.
Hoefs, J., 2004. Stable Isotope Geochemistry. Springer, Berlin, 244pp.
Huang, C.Y., Yuan, P.B., Lin, C.W., Wang, T.K. and Chang, C.P., 2000. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor, Papua New Guinea, Urals and Corsica. Tectonophysics, 325(1-2): 1-21.
Johnston, D.T., Farquhar, J., Wing, B.A., Kaufman, A., Canfield, D.E. and Habicht, K.S., 2005. Multiple sulfur isotope fractionations in biological systems: A case study with sulfate reducers and sulfur disproportionators. American Journal of Science, 305(6-8): 645-660.
Jorgensen, B.B., 1982. Mineralization of organic-matter in the sea bed - the role of sulfate reduction. Nature, 296(5858): 643-645.
Jorgensen, B.B., Bottcher, M.E., Luschen, H., Neretin, L.N. and Volkov, I.I., 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica Et Cosmochimica Acta, 68(9): 2095-2118.
Kvenvolden, K.A., 1993. Gas hydrates:geological perspective and global change. Rev. Geophys., 31(2): 173-187.
Lim, Y.C., Lin, S., Yang, T.F., Chen, Y.-G. and Liu, C.-S., 2011. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan. Marine and Petroleum Geology, 28(10): 1829-1837.
Lin, S., Hsieh, W.-C., Lim, Y.C., Yang, T.F., Liu, C.-S. and Wang, Y., 2006. Methane migration and its influence on sulfate reduction in the Good Weather Ridge region, South China Sea continental margin sediments. Terrestrial Atmospheric and Oceanic Sciences, 17(4): 883-902.
Lin, S., Huang, K.-M. and Chen, S.-K., 2002. Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment. Deep Sea Research Part I: Oceanographic Research Papers, 49(10): 1837-1852.
Lin, S. and Morse, J.W., 1991. Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. Am. J. Sci., 291: 55-89.
Liu, C.-S., Schnurle, P., Wang, Y., Chung, S.-H., Chen, S.-C. and Hsiuan, T.-H., 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 17(4): 615-644.
Lyons, T.W. and Berner, R.A., 1992. Carbon sulfur iron systematics of the uppermost deep-water sediments of the Black-Sea. Chemical Geology, 99(1-3): 1-27.
Niewohner, C., Hensen, C., Kasten, S., Zabel, M. and Schulz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica Et Cosmochimica Acta, 62(3): 455-464.
Ono, S., Wing, B., Johnston, D., Farquhar, J. and Rumble, D., 2006. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochimica Et Cosmochimica Acta, 70(9): 2238-2252.
Reeburgh, W.S., 1982. A major sink and flux control for methane in marine sediments: anaerobic consumption. In: Fanning, K.A., 60 Manheim, F.T. (Eds.), The Dynamic Environment of the Ocean Floor. Lexington Books, Lexington, MA: 203-218.
Rees, C.E., 1973. Steady-state model for sulfur isotope fractionation in bacterial reduction processes. Geochimica Et Cosmochimica Acta, 37(5): 1141-1162.
Rickard, D., 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 degrees C: The rate equation. Geochimica Et Cosmochimica Acta, 61(1): 115-134.
Rudnicki, M.D., Elderfield, H. and Spiro, B., 2001. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochimica Et Cosmochimica Acta, 65(5): 777-789.
Suess, E., 1980. Particulate organic-carbon flux in the oceans - surface productivity and oxygen utilization. Nature, 288(5788): 260-263.
Wilkin, R.T. and Barnes, H.L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica Et Cosmochimica Acta, 60(21): 4167-4179.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63468-
dc.description.abstract海洋環境中藉由微生物所進行的硫酸鹽還原作用是沉積物中氧化有機碳的主要機制。地層深部的甲烷水合物汽化所提供的甲烷提供了硫酸鹽還原菌及厭氧甲烷氧化菌額外的碳及能量來源,加速硫酸鹽的還原作用。活動大陸邊緣(active margin)地殼運動可能是造成地層深部的甲烷往淺層移棲的主要機制。本研究擬探討台灣西南海域活動性大陸邊緣永安海脊中甲烷通量的改變對於硫酸鹽還原作用及厭氧甲烷氧化作用變化的影響,並評估活動大陸邊緣地殼運動對厭氧甲烷反應與硫同位素變化的重要性。為探討甲烷通量在空間上與時序上的變化,本研究於r/v Marion Dufresne 178航次及海研一號OR1-961期間,分別利用Calypso巨型活塞岩心、CASQ巨型箱型岩心與12m活塞岩心採樣。
  本研究測站均含高甲烷通量,導致快速的硫酸鹽還原作用及厭氧甲烷氧化作用,控制碳與硫的生地化循環。高甲烷通量造成小的硫同位素分化係數、高濃度的溶解硫化氫以及在SMTZ有高黃鐵硫含量。硫同位素及黃鐵硫含量呈現空間與區域性的變化,硫同位素分化係數介於α = 1.009 to 1.035。研究結果顯示甲烷通量是控制AOM及硫同位素分化的主要因素。黃鐵硫以及C/S比值在垂直剖面上的變化,紀錄了過去甲烷通量的改變。透過黃鐵硫在沉積物富集峰的數量以及垂直上分布的特性,顯示永安海脊區域中甲烷通量的變化可能是受到研究區域地殼構造活動頻率所影響導致氣體遷移與其後之數次硫酸鹽還原作用及厭氧甲烷氧化作用。
zh_TW
dc.description.abstractMicrobial sulfate reduction is a major pathway for organic matter oxidation in marine sediment. Upward diffusion of methane from gas hydrate in deep sediment could provide extra source of carbon and energy for sulfate reducing bacteria and anaerobic methanotroph with subsequently induced higher sulfate reduction rate in sediment. Tectonic activity and glaciation/de-glaciation have been hypothesized to explain dissociation of gas hydrate and subsequent gas migration, with glaciation/de-glaciation a more common mechanism. This study investigated the effect of methane migration on the sulfate reduction and anaerobic methane oxidation process in Yung-An Ridge offshore southwestern Taiwan, in particular, degree of methane migration as a result of tectonic activities in the active margin offshore southwestern Taiwan. Samples were taken on r/v Marion Dufresne,cruise 178 using Calypso giant piston core, CASQ box core and OR1-961 cruise with a 12 m piston core in order to evaluate spatial and vertical variation of the study biogeochemcical process.
  High methane flux induced rapid sulfate reduction and anaerobic methane oxidation in the study sites. The anaerobic methane oxidation play a major role in altering the carbon and sulfur cycle in the region. Smaller sulfur isotopic fractionation factor, high concentrations of dissolved sulfide and high pyrite content near SMTZ were results of rapid sulfate reduction induced by higher methane flux. Pyrite concentrations and sulfur isotopic values showed strong spatial and vertical variations. Sulfur isotopic fractionation factor range from α = 1.009 to 1.035. Vertical variations of pyrite content and C/S ratio were found at the study sites. The results showed that methane venting strongly control AOM process and also altering sulfur isotopic fractionation. Appearances of multiple pyrite peaks representing past and present SMTZ in the study area indicated that methane gas venting may by relate to tectonic activities of the region. 
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:43:47Z (GMT). No. of bitstreams: 1
ntu-101-R98241403-1.pdf: 3686147 bytes, checksum: e7bd85be71c32e51dbf82d3a4c069b86 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目 錄
中文摘要 I
英文摘要 II
目 錄 III
圖 目 錄 VI
表 目 錄 VII
第一章 緒論 1
1.1硫酸鹽還原作用與厭氧甲烷氧化作用 1
1.2硫同位素 2
1.3海洋沉積物自生硫化鐵 5
1.4研究區域 6
1.5研究動機 7
第二章 樣品採集與分析方法 8
2.1樣品採集 8
2.1.1採樣位置 8
2.1.2採樣方法 8
2.2樣品前處理 12
2.3分析方法 12
2.3.1間隙水酸鹽濃度 14
2.3.2間隙水溶解硫化氫濃度 14
2.3.3沉積物中甲烷濃度 14
2.3.4沉積物酸可萃取硫及黃鐵礦硫含量 15
2.3.5沉積物活性鐵含量 15
2.3.6沉積物有機碳及碳酸鈣含量 16
2.3.7硫酸鹽硫同位素分析 16
第三章 研究結果 18
3.1岩心MD127-05-2911 19
3.2岩心MD178-10-3279 21
3.3岩心MD178-10-3275 23
3.4岩心MD178-10-3276 25
3.5岩心OR1-961-2-P 27
3.6岩心MD178-10-3274 29
3.7岩心MD178-10-3278C 31
3.8岩心OR1-961-1-P 33
3.9岩心MD178-10-3277 35
3.10岩心MD-178-3280C 37
第四章 討論 39
4.1黃鐵硫空間與垂直之分布 39
4.2硫酸鹽通量與甲烷通量 44
4.3 硫同位素分化 48
4.3.1硫同位素分化計算 48
4.3.2硫同位素分化與硫酸鹽通量之關係 51
第五章 結論 54
參考文獻 55
圖目錄
圖2-1、岩心採樣區域與測站位置 10.
圖2-2、樣品分析流程圖 13.
圖3-1、通過測站MD-3275、MD-3276、MD-3274、MD-3277之震測剖面圖 18.
圖3-2、MD127-05-2911 各項地球化學參數之垂直剖面圖 20.
圖3-3、MD178-10-3279 各項地球化學參數之垂直剖面圖 22.
圖3-4、MD178-10-3275 各項地球化學參數之垂直剖面圖 24.
圖3-5、MD178-10-3276 各項地球化學參數之垂直剖面圖 26.
圖3-6、OR1-961-2-P 各項地球化學參數之垂直剖面圖 28.
圖3-7、MD178-10-3274 各項地球化學參數之垂直剖面圖 30.
圖3-8、MD178-10-3278C各項地球化學參數之垂直剖面圖 32.
圖3-9、OR1-961-1-P 各項地球化學參數之垂直剖面圖 34.
圖3-10、MD178-10-3277 各項地球化學參數之垂直剖面圖 36.
圖3-11、MD178-10-3280C 各項地球化學參數之垂直剖面圖 38.
圖4-1、硫酸鹽푓 與∆δ關係圖 50.
圖4-2、本研究區域各測站間隙水硫酸鹽通量與硫同位素分化係數之相關圖 53.

表目錄
表2-1、採樣測站之航次、站位名稱、經緯度、水深、岩心長度及岩心類別 11.
表2-2、硫同位素國際標準品之δ34S value、測量之標準偏差(SD) 17.
表4-1、各測站硫酸鹽通量與甲烷通量 47.
表4-2、各測站之硫同位素分化係數及對應的硫酸鹽通量 52.
dc.language.isozh-TW
dc.title台灣西南海域永安海脊沉積物中厭氧甲烷氧化對於硫同位素及黃鐵礦物生成的影響zh_TW
dc.titleAnaerobic Methane Oxidation and its Influence on Sulfur Isotope and Pyrite Formation in the Yung-An Ridge Offshore Southwestern Taiwanen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊燦堯,溫良碩,王珮玲
dc.subject.keyword硫酸鹽還原作用,硫同位素,黃鐵礦,厭氧甲烷氧化作用,zh_TW
dc.subject.keywordsulfate reduction,sulfur isotope,pyrite,anaerobic methane oxidation,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2012-08-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved