請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63464完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝銘鈞 | |
| dc.contributor.author | Po-Yu Li | en |
| dc.contributor.author | 李伯禹 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:43:31Z | - |
| dc.date.available | 2017-08-28 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-22 | |
| dc.identifier.citation | 1. Wu, X., et al., Genetic Variations in Radiation and Chemotherapy Drug Action Pathways Predict Clinical Outcomes in Esophageal Cancer. Journal of Clinical Oncology, 2006. 24(23): p. 3789-3798.
2. Cunningham, D., et al., Colorectal cancer. The Lancet, 2010. 375(9719): p. 1030-1047. 3. Clarke, M.F., et al., Cancer Stem Cells—Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells. Cancer Research, 2006. 66(19): p. 9339-9344. 4. Tang, D.G., Understanding cancer stem cell heterogeneity and plasticity. Cell Res, 2012. 22(3): p. 457-472. 5. Bao, S., et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 2006. 444(7120): p. 756-760. 6. Hermann, P.C., et al., Distinct Populations of Cancer Stem Cells Determine Tumor Growth and Metastatic Activity in Human Pancreatic Cancer. Cell Stem Cell, 2007. 1(3): p. 313-323. 7. Dean, M., T. Fojo, and S. Bates, Tumour stem cells and drug resistance. Nat Rev Cancer, 2005. 5(4): p. 275-284. 8. Rich, J.N., Cancer Stem Cells in Radiation Resistance. Cancer Research, 2007. 67(19): p. 8980-8984. 9. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-648. 10. Dalerba, P., et al., Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences, 2007. 104(24): p. 10158-10163. 11. O'Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-110. 12. Ricci-Vitiani, L., et al., Colon cancer stem cells. Gut, 2008. 57(4): p. 538-548. 13. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401. 14. Vescovi, A.L., R. Galli, and B.A. Reynolds, Brain tumour stem cells. Nat Rev Cancer, 2006. 6(6): p. 425-436. 15. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 2003. 100(7): p. 3983-3988. 16. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-115. 17. Suva, M.-L., et al., Identification of Cancer Stem Cells in Ewing's Sarcoma. Cancer Research, 2009. 69(5): p. 1776-1781. 18. Piccirillo, S., et al., Brain cancer stem cells. Journal of Molecular Medicine, 2009. 87(11): p. 1087-1095. 19. Qiao, X. and D. Gumucio, Current molecular markers for gastric progenitor cells and gastric cancer stem cells. Journal of Gastroenterology, 2011. 46(7): p. 855-865. 20. ISHIGAMI, S., et al., Prognostic Impact of CD133 Expression in Gastric Carcinoma. Anticancer Research, 2010. 30(6): p. 2453-2457. 21. Xiazhen Yu, Y.L., et al., CD133, Stem Cells, and Cancer Stem Cells: Myth or Reality? Curr Colorectal Cancer Rep, 2011. 7(4): p. 253-259. 22. Li, G., et al., CD133+ single cell-derived progenies of colorectal cancer cell line SW480 with different invasive and metastatic potential. Clinical and Experimental Metastasis, 2010. 27(7): p. 517-527. 23. Kawamoto, H., et al., Characteristics of CD133+ Human Colon Cancer SW620 Cells. Cell Transplantation, 2010. 19(6-7): p. 857-864. 24. Artells, R., et al., Tumour CD133 mRNA expression and clinical outcome in surgically resected colorectal cancer patients. European Journal of Cancer, 2010. 46(3): p. 642-649. 25. Lee, J., et al., Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 2006. 9(5): p. 391-403. 26. Kirkland, S.C., Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells. Br J Cancer, 2009. 101(2): p. 320-326. 27. Li, W.-J., et al., Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 2005. 26(25): p. 5158-5166. 28. Yim, E.K.F., et al., Proliferation and differentiation of human mesenchymal stem cell encapsulated in polyelectrolyte complexation fibrous scaffold. Biomaterials, 2006. 27(36): p. 6111-6122. 29. Hayman, M.W., et al., Growth of human stem cell-derived neurons on solid three-dimensional polymers. Journal of Biochemical and Biophysical Methods, 2005. 62(3): p. 231-240. 30. Konagaya, S., et al., Design of culture substrates for large-scale expansion of neural stem cells. Biomaterials, 2011. 32(4): p. 992-1001. 31. Yang, Z., et al., The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials, 2010. 31(18): p. 4846-4854. 32. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotech, 2010. 28(6): p. 581-583. 33. Shackleton, M., et al., Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution. Cell, 2009. 138(5): p. 822-829. 34. Dick, J.E., Looking ahead in cancer stem cell research. Nat Biotech, 2009. 27(1): p. 44-46. 35. Dick, J.E., Stem cell concepts renew cancer research. Blood, 2008. 112(13): p. 4793-4807. 36. Pardal, R., M.F. Clarke, and S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nat Rev Cancer, 2003. 3(12): p. 895-902. 37. Bruce, W.R. and H. Van Der Gaag, A Quantitative Assay for the Number of Murine Lymphoma Cells capable of Proliferation in vivo. Nature, 1963. 199(4888): p. 79-80. 38. McCulloch, E., Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood, 1983. 62(1): p. 1-13. 39. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-737. 40. Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 2007. 15(3): p. 504-514. 41. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008. 8(10): p. 755-768. 42. Szotek, P.P., et al., Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences, 2006. 103(30): p. 11154-11159. 43. Patrawala, L., et al., Side Population Is Enriched in Tumorigenic, Stem-Like Cancer Cells, whereas ABCG2+ and ABCG2− Cancer Cells Are Similarly Tumorigenic. Cancer Research, 2005. 65(14): p. 6207-6219. 44. Kim, M.P., et al., ALDH Activity Selectively Defines an Enhanced Tumor-Initiating Cell Population Relative to CD133 Expression in Human Pancreatic Adenocarcinoma. PLoS ONE, 2011. 6(6): p. e20636. 45. Chen, Y.-C., et al., Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 2009. 385(3): p. 307-313. 46. Charafe-Jauffret, E., et al., Breast Cancer Cell Lines Contain Functional Cancer Stem Cells with Metastatic Capacity and a Distinct Molecular Signature. Cancer Research, 2009. 69(4): p. 1302-1313. 47. O/'Brien, C.A., et al., A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007. 445(7123): p. 106-110. 48. Zhang, P., et al., Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Letters, 2009. 277(2): p. 227-234. 49. Shenghui, H., D. Nakada, and S.J. Morrison, Mechanisms of Stem Cell Self-Renewal. Annual Review of Cell and Developmental Biology, 2009. 25(1): p. 377-406. 50. Jaenisch, R. and R. Young, Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming. Cell, 2008. 132(4): p. 567-582. 51. PARDAL, R., et al., Stem Cell Self-Renewal and Cancer Cell Proliferation Are Regulated by Common Networks That Balance the Activation of Proto-oncogenes and Tumor Suppressors. Cold Spring Harbor Symposia on Quantitative Biology, 2005. 70: p. 177-185. 52. Chen, Y.-C., et al., Oct-4 Expression Maintained Cancer Stem-Like Properties in Lung Cancer-Derived CD133-Positive Cells. PLoS ONE, 2008. 3(7): p. e2637. 53. Clement, V., et al., HEDGEHOG-GLI1 Signaling Regulates Human Glioma Growth, Cancer Stem Cell Self-Renewal, and Tumorigenicity. Current biology : CB, 2007. 17(2): p. 165-172. 54. Gupta, Piyush B., et al., Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell, 2011. 146(4): p. 633-644. 55. Chaffer, C.L., et al., Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences, 2011. 56. Das, B., et al., Hypoxia Enhances Tumor Stemness by Increasing the Invasive and Tumorigenic Side Population Fraction. STEM CELLS, 2008. 26(7): p. 1818-1830. 57. Mani, S.A., et al., The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell, 2008. 133(4): p. 704-715. 58. Iliopoulos, D., et al., Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proceedings of the National Academy of Sciences, 2011. 108(4): p. 1397-1402. 59. Chen, S.-F., et al., Nonadhesive Culture System as a Model of Rapid Sphere Formation with Cancer Stem Cell Properties. PLoS ONE, 2012. 7(2): p. e31864. 60. Cao, L., et al., Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterology, 2011. 11(1): p. 71. 61. Gage, F.H., J. Ray, and L.J. Fisher, Isolation, Characterization, and use of Stem Cells from the CNS. Annu Rev Neurosci, 1995. 18: p. 159-192. 62. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-156. 63. Lin, G. and R.-H. Xu, Progresses and Challenges in Optimization of Human Pluripotent Stem Cell Culture. Curr Stem Cell Res Ther, 2010. 5: p. 207-214. 64. Williams, R.L., et al., Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 1988. 336(6200): p. 684-687. 65. Keller, G., Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes & Development, 2005. 19(10): p. 1129-1155. 66. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-9144. 67. Mager, M.D., V. LaPointe, and M.M. Stevens, Exploring and exploiting chemistry at the cell surface. Nat Chem, 2011. 3(8): p. 582-589. 68. Cho, W.K., B. Kong, and I.S. Choi, Highly Efficient Non-Biofouling Coating of Zwitterionic Polymers: Poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide). Langmuir, 2007. 23(10): p. 5678-5682. 69. Zhong, Y., et al., Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Letters, 2010. 299(2): p. 150-160. 70. Liotta, L.A. and E. Kohn, Anoikis: Cancer and the homeless cell. Nature, 2004. 430(7003): p. 973-974. 71. Han, M., et al., Enhanced Percolation and Gene Expression in Tumor Hypoxia by PEGylated Polyplex Micelles. Mol Ther, 2009. 17(8): p. 1404-1410. 72. Chen, K.-l., et al., Highly enriched CD133<sup>+</sup>CD44<sup>+</sup> stem-like cells with CD133<sup>+</sup>CD44<sup>high</sup> metastatic subset in HCT116 colon cancer cells. Clinical and Experimental Metastasis, 2011. 28(8): p. 751-763. 73. Kantak, S.S. and R.H. Kramer, E-cadherin Regulates Anchorage-independent Growth and Survival in Oral Squamous Cell Carcinoma Cells. Journal of Biological Chemistry, 1998. 273(27): p. 16953-16961. 74. Mueller, S., E. Cadenas, and A.H. Schonthal, p21WAF1 Regulates Anchorage-independent Growth of HCT116 Colon Carcinoma Cells via E-Cadherin Expression. Cancer Research, 2000. 60(1): p. 156-163. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63464 | - |
| dc.description.abstract | 癌細胞內有一部分特異細胞具有自我更新的能力、有相對高的抗藥性和抗輻射能力,而且較容易形成腫瘤,它們被稱為癌症幹細胞,與一般幹細胞無異,能分化出比較下游的細胞。我們利用目前常用的幹細胞標誌表現來探討大腸直腸癌細胞的幹性,例如表面抗原標誌CD133、CD44以及與自我更新相關的轉錄因子Oct4、SOX2、Nanog。除此之外我們試著尋找特殊的細胞培養條件,期望能藉此增加幹細胞的表現量,培養條件分為兩類,一為使用不同的細胞培養液,加入生長因子bFGF和EGF;一為在細胞培養盤上塗覆不同之親水性聚合物基材,令細胞呈球狀聚集。然而雖然不同培養條件能有效改變各個幹細胞標誌的表現量,卻似乎沒有規律,只能得到培養環境對癌症細胞特性的影響扮演著重要角色。
一般幹細胞的特性認為其下游的細胞不容易反分化回幹細胞,但越來越多證據顯示,癌細胞內雖然有不同蛋白和基因表現的細胞,他們之間卻可以依照機率互相轉換,並在一段時間達成平衡,因此被用表面抗原標誌篩選出來的細胞,培養一段時間後應會達到一固定比例,因此我們利用不同的培養條件培養以CD133篩選出來的大腸直腸癌細胞,觀察是否能夠維持其表現量,發現無論何種條件均 會使得CD133表現量達到平衡狀態,只是平衡點不同,若以生長因子及球狀培養方式則能維持較高CD133表現,一般培養條件則否,而沒有表現CD133的細胞則會因為這兩種培養環境而增加其表現量,證明兩種細胞間能夠互相轉換,因此我們應用了數學上的馬可夫矩陣來描述細胞間的轉換機率,並預測未來表現量的變化,理論上,我們發現無論大腸直腸癌細胞的CD133表現比例多少,只要培養環境相同,就能夠達到一固定平衡,因此再次說明培養環境對癌症細胞特性的影響扮演著重要角色。 | zh_TW |
| dc.description.abstract | A growing body of observations indicate that, only a minority population of cells within a tumor possess the capacity to undergo self-renewal and to cause the heterogeneous linage of cancer cells that comprise the tumor. This functional subset of cells operationally defined as the cancer stem cell is reside at the apices of hierarchies and differentiate into non-stem progeny in a unidirectional manner.
In our study, we chose CD133 and other stem cell markers, which are often been used to identified cancer stem cell on colorectal cancer to demonstrate the stemness of the cells. Additionally, we try to find out a condition to enhance the cancer stem cell properties. It seems that the conditions we used caused distinct alteration and still did not find out a rational conclusion in different cells Even though the definition of cancer stem cell described above. More and more studies stated that the cell-state of cancer can convert into each other randomly and can give rise to equilibrium over time after sorting. In our study, the expression level of surface marker, CD133, in human colorectal cancer can be modulated plastically in various cell culture conditions. We utilized Markov model to establish the transition probabilities between cells. The evidence demonstrates the probability for CD133 negative cells can convert into positive ones and will give rise to equilibrium over time. Moreover, we can use the transition probabilities and the population of cells in the beginning to predict cell-state dynamics over time. We find out that even if the population of CD133+ cells are different, it will give rise to the same equilibrium state, which means that the culture condition plays important role in cell properties. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:43:31Z (GMT). No. of bitstreams: 1 ntu-101-R99548004-1.pdf: 1386484 bytes, checksum: eed833e32c37557644522b819ff83a83 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Table of Contents iv List of Figures vi List of Tables ix 1. Introduction 1 1.1 Background 1 1.2 Cancer Stem Cell Model 5 1.3 Identification of Cancer Stem Cell 6 1.4 Self-renewal and Cancer Stem Cell 9 1.5 Intrinsic and Induced Plasticity in Cancer Stem Cell Progeny 10 1.6 The Culture Condition for Maintaining Cancer Stem Cells 11 1.6.1 Choice of Culture Medium 11 1.6.2 Choice of Polymeric Coatings 12 2.Material and Method 14 2.1 Materials 14 2.2 Cell Culture 17 2.3 Sphere Culture 17 2.4 Live/dead Assay 17 2.5 Chemosensitivity and Proliferation Assay 18 2.6 Flow Cytometry Analysis 18 2.7 Cell Viability Assay 20 2.8 Preparation of Polymer-coated Plates 20 2.9 Fluorescence-Activated Cell Sorting 21 2.10 Description of Cell Population Dynamic Markov Model 22 2.11 Statistical Analysis 23 3. Results and Discussion 24 3.1 The Expression Levels of Surface Markers on Colorectal Cancer 24 3.2 The Morphology of Colorectal Cancer Cell in Different Culture Conditions 25 3.3 Live/dead Assay 26 3.4 Chemosensitivity Assay 27 3.5 Stem Cell Properties are Affected by Serum-free Culturing Condition 29 3.6 Stem Cell Properties are Affected by Spheroid Formation 34 3.7 The Morphology of Colorectal Cancer Cultured on Polymeric Coatings 38 3.8 Cytotoxicity of Polymers and the Viability of Cells Cultured on These Polymeric Coatings 38 3.9 Stem Cell Properties are Affected by Different Polymer Coatings 43 3.10 Fluorescence-activated Cell Sorting 44 3.11 The Morphologies of CD133+ and CD133- cells 45 3.12 Cell-state dynamics in colorectal cancer populations 45 3.13 Quantitative Markov Model of the Population of Cell Transition 48 3.14 Prediction of Cell Population Dynamics with the Stochastic Cell-state Transition Model 49 4. Conclusions 52 5. Reference 53 | |
| dc.language.iso | en | |
| dc.subject | 馬可夫矩陣 | zh_TW |
| dc.subject | 自我更新 | zh_TW |
| dc.subject | 癌症幹細胞 | zh_TW |
| dc.subject | 表面抗原標誌 | zh_TW |
| dc.subject | 生長因子 | zh_TW |
| dc.subject | 機率 | zh_TW |
| dc.subject | 聚合物基材 | zh_TW |
| dc.subject | self-renewal | en |
| dc.subject | transition probability | en |
| dc.subject | Markov model | en |
| dc.subject | cell sorting | en |
| dc.subject | culture condition | en |
| dc.subject | stemness | en |
| dc.subject | marker | en |
| dc.subject | cancer stem cell | en |
| dc.title | 利用不同培養液和聚合物塗覆之基材培養大腸直腸癌細胞來增加或維持幹細胞的特性 | zh_TW |
| dc.title | Culture of Colorectal Cancer Cells Using Different Cell Culture Media and Polymer Coatings to Enhance/Sustain Cancer Stem Cell Properties | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴秉杉,駱俊良,張富雄,楊台鴻,羅彩月 | |
| dc.subject.keyword | 自我更新,癌症幹細胞,表面抗原標誌,生長因子,聚合物基材,機率,馬可夫矩陣, | zh_TW |
| dc.subject.keyword | self-renewal,cancer stem cell,marker,stemness,culture condition,cell sorting,Markov model,transition probability, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
