Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63462
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富
dc.contributor.authorkuei-Yu Cianen
dc.contributor.author錢奎羽zh_TW
dc.date.accessioned2021-06-16T16:43:23Z-
dc.date.available2017-08-27
dc.date.copyright2012-08-27
dc.date.issued2012
dc.date.submitted2012-08-22
dc.identifier.citation[1] Professor R. E. Smalley, 'Top Ten Problems of Humanity for Next 50 Years', Energy & Nano Technology Conference, Rice University, May 3, 2003.
[2] John F. Bookout (President of Shell USA) ,“Two Centuries of Fossil Fuel Energy”, International Geological Congress, Washington DC, July 10,1985.
[3] Ron Swenson, “Peak Oil, Climate Recovery, and Renewable Energy ”, ASES July 2006, Thursday 10:30am to 12:00pm
http://www.ecotopia.com/ASES/Solar2006/ Peak Oil Forum Peak Oil Forum
[4] S. S. Sun and N. S. Sariciftci, Organic photovoltaics: mechanism, materials, and devices, pp. 4-17, vol. 99. CRC, 2005.
[5] S. M. Sze, Semiconductor devices: physics and technology. Wiley-India, pp.330-340, 2009.
[6] T. Markvart, “Photovoltaic solar energy conversion,” European Summer University: Energy for Europe, 2002.
[7] 陳頤承, 郭昭顯, 陳悛亨, 太陽電池量測技術, 工業材料雜誌258期, 2008.
[8] ASTM International, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, G 173-03, 2003. The data can be downloaded at.left angle bracket. http://rredc.nrel.gov/solar/spectra/am1.5/right-pointing angle bracket.
[9] J. Nelson, The physics of solar cells. Imperial College Press London, 2003.
[10] E. Becquerel. 'Memoire sur les effets electriques produits sous l'influence des rayons solaires'. Comptes Rendus 9: 561–567. 1839
[11] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, vol. 25, no. 5, p. 676, 1954.
[12] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” Journal of Applied Physics, vol. 32, p. 510, 1961.
[13] K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5%-efficient GaInP/GaAs tandem solar cells,” Applied physics letters, vol. 65, no. 8, pp. 989–991, 1994.
[14] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Applied Physics Letters, vol. 28, no. 11, pp. 671–673, 1976.
[15] S. R. Kurtz and N. R. E. L. (US), Opportunities and challenges for development of a mature concentrating photovoltaic power industry. National Renewable Energy Laboratory, 2012.
[16] A. Moliton and J. M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polymer international, vol. 55, no. 6, pp. 583–600, 2006.
[17] M. C. Scharber et al., “Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency,” Advanced Materials, vol. 18, no. 6, pp. 789-794, Mar. 2006.
[18] M. Jorgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells 92 (2008) 686–714.
[19] E. C. Chang, C. Chao, and R. Lee, “Enhancing the efficiency of MEH‐PPV and PCBM based polymer solar cells via optimization of device configuration and processing conditions,” Journal of Applied Polymer Science, vol. 101, no. 3, pp. 1919-1924, Aug. 2006.
[20] G.-M. Ng, E. L. Kietzke, T. Kietzke, L.-W. Tan, P.-K. Liew, and F. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cells,” Applied Physics Letters, vol. 90, no. 10, p. 103505, 2007.
[21] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Applied Physics Letters, vol. 80, no. 7, p. 1288, 2002.
[22] K. Kawano and C. Adachi, “Reduced initial degradation of bulk heterojunction organic solar cells by incorporation of stacked fullerene and lithium fluoride interlayers,” Applied Physics Letters, vol. 96, no. 5, p. 053307, 2010.
[23] M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes,” Applied Physics Letters, vol. 77, no. 14, p. 2255, 2000.
[24] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Degradation of organic solar cells due to air exposure,” Solar Energy Materials and Solar Cells, vol. 90, no. 20, pp. 3520-3530, Dec. 2006.
[25] S. E. Shaheen, M. S. White, D. C. Olson, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction plastic solar cells.”
[26] S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K. Y. Jen, 'Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer', Applied Physics Letters
[27] Jing-Shun Huang, Chen-Yu Chou, and Ching-Fuh Lin, “Efficient and air-stable polymer photovoltaic devices with WO3-V2O5 mixed oxides as anodic modification,” IEEE Electron Device Letters. Volume 31, Issue 4 , pp. 332-334, April 2010
[28] F. Zhang et al., “Recent development of the inverted configuration organic solar cells,” Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1785-1799, Jul. 2011.
[29] Z. Xu et al., “Vertical Phase Separation in Poly(3‐hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells,” Advanced Functional Materials, vol. 19, no. 8, pp. 1227-1234, Apr. 2009.
[30] W. A. Little, “Possibility of synthesizing an organic superconductor,” Physical Review, vol. 134, no. 6, p. A1416–A1424, 1964.
[31] C. K. Chiang et al., “Electrical Conductivity in Doped Polyacetylene,” Physical Review Letters, vol. 39, no. 17, p. 1098, Oct. 1977.
[32] J. H. Burroughes et al., “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539-541, Oct. 1990.
[33] C. W. Tang, “Two-layer organic photovoltaic cell,” Applied Physics Letters, vol. 48, no. 2, pp. 183–185, 1986.
[34] F. J. Kampas and M. Gouterman, “Porphyrin films. 3. Photovoltaic properties of octaethylporphine and tetraphenylporphine,” The Journal of Physical Chemistry, vol. 81, no. 8, pp. 690-695, Apr. 1977.
[35] A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, and C. A. Rowe, “Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky-barrier cells,” Journal of Applied Physics, vol. 45, no. 1, p. 230, 1974.
[36] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, and others, “Plastic solar cells,” Advanced Functional Materials, vol. 11, no. 1, pp. 15–26, 2001.
[37] M. Theander et al., “Photoluminescence quenching at a polythiophene/C60 heterojunction,” Physical Review B, vol. 61, no. 19, p. 12957, May. 2000.
[38] C. J. Brabec and S. N. Sariciftci, “Recent Developments in Conjugated Polymer Based Plastic Solar Cells,” Monatshefte fuer Chemie/Chemical Monthly, vol. 132, no. 4, pp. 421-431, Apr. 2001.
[39] G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity,” Applied Physics Letters, vol. 64, no. 25, p. 3422, 1994.
[40] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science, vol. 270, no. 5243, pp. 1789-1791, Dec. 1995.
[41] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Applied Physics Letters, vol. 78, no. 6, p. 841, 2001.
[42] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Applied Physics Letters, vol. 80, no. 7, p. 1288, 2002.
[43] P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Applied Physics Letters, vol. 81, no. 20, p. 3885, 2002.
[44] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” Journal of Applied Physics, vol. 98, no. 4, p. 043704, 2005.
[45] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Advanced Functional Materials, vol. 15, no. 10, pp. 1617–1622, 2005.
[46] J. Y. Kim et al., “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science, vol. 317, no. 5835, p. 222, 2007.
[47] H.-Y. Chen et al., “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat Photon, vol. 3, no. 11, pp. 649-653, Nov. 2009.
[48] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” Journal of Applied Physics, vol. 98, no. 4, p. 043704, 2005.
[49] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, 'Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology', Advanced Functional Materials 15, 2005, 1617-1622.
[50] G. Li et al., “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nature Materials, vol. 4, no. 11, pp. 864–868, 2005.
[51] C.-W. Chu, H. Yang, W.-J. Hou, J. Huang, G. Li, and Y. Yang, “Control of the nanoscale crystallinity and phase separation in polymer solar cells,” Applied Physics Letters, vol. 92, no. 10, p. 103306, 2008.
[52] F. Zhang et al., “Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends,” Advanced Functional Materials, vol. 16, no. 5, pp. 667-674, Mar. 2006.
[53] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, and S. E. Inc, “Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells*,” AdV. Funct. Mater, vol. 18, pp. 1783–1789, 2008.
[54] Yu-Min Shen, Chao-Shuo Chen, Po-Ching Yang, Shou-Yuan Ma, Ching-Fuh
Lin, Improvement of surface morphology of thin films and performance by
applying electric field on P3HT:PCBM based solar cells, Solar Energy Materials and Solar Cells Volume 99, April 2012, Pages 263–267.
[55] Bertrand Tremolet de Villers, Christopher J. Tassone, Sarah H. Tolbert, and Benjamin J. Schwartz, Improving the reproducibility of P3HT:PCBM solar cells by controlling the PCBM/cathode interface, J. Phys. Chem. C, Vol. 113, No. 44, 2009 18978.
[56] Jing-Shun Huang, Chen-Yu Chou, and Ching-Fuh Lin, Enhancing performance of organic-inorganic hybrid solar cells using a fullerene interlayer from all-solution processing,”Solar Energy Materials and Solar Cells, Volume 94, Issue 2, February 2010, Pages 182–186.
[57] Amare Benor Belay, Wei Zhou, Rodica Krueger, Kristopher O. Davis, U‥mit Alver, and Nicoleta Sorloaica-Hickman, Effect of UV-Ozone Exposure on PCBM, IEEE journal of photovoltaics, vol. 2, NO. 2, April 2012, 2156-3381.
[58] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, E. S. Aydil, 'Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices', Nano Letters 7, 2007, 1793-1798.
[59] Guangyao Sheng and Stephen A. Boyd , Polarity Effect on Dichlorobenzene Sorption by Hexadecyltrimethylammonium-Exchanged Clays, Clays and Clay Minerals, February 2000, v. 48, p. 43-50, published online 1 February 2000.
[60] Srinivas Sista, Mi-Hyae Park, Ziruo Hong, Yue Wu, Jianhui Hou, Wei Lek Kwan, Gang Li, and Yang Yang, Highly Efficient Tandem Polymer Photovoltaic Cells, Adv. Mater. 2010, 22, 380–383.
[61] L.M.Lin,C.H.Yang,Wen-Luh Yang,and K.S.Hsia, Reducing Dielectric Constant of Porous Silica Films by Twice Surface-Modification Processing, Symposium on Nano Device Technology , 2006-03. Taiwan.
[62] Alessandro Fraleoni-Morgera, Simone Marazzita, Davide Frascaro, Leonardo Setti , Influence of a non-ionic surfactant on the UV–vis absorption features of regioregular head-to-tail poly(3-hexylthiophene) in water-based dispersions, Synthetic Metals Volume 147, Issues 1–3, 7 December 2004, Pages 149–154.
[63] Gang Fang, Shupeng Wu, Zhiyuan Xie, Yanhou Geng, Lixiang ang , Enhanced Performance for Polymer Solar Cells by Using Surfactant-Modified PEDOT:PSS as the Anode Buffer Layer, Macromol. Chem. Phys. 2011, 212, 1846–1851.
[64] 洪廷旭,曹恒光,Wetting Behavior of Surfactant Solutions on Hydrophobic Surfaces: Copper and Tef lon,碩士畢業論文。
[65] J. K. Lee et al., Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells, Journal of the American Chemical Society, vol. 130, no. 11, pp. 3619-3623, Mar. 2008.
[66] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Advanced Functional Materials, vol. 15, no. 10, p. 1617–1622, 2005.
[67] K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics, Applied Physics Letters, vol. 90, no. 16, p. 163511, 2007.
[68] F. Zhang, W. Mammo, L. M. Andersson, S. Admassie, M. R. Andersson, and O. Inganas, Low‐Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near‐Infrared Polymer Solar Cells, Advanced Materials, vol. 18, no. 16, pp. 2169-2173, Aug. 2006.
[69] J.B. Miller, H.–J. Hsieh, B.H. Howard and E. Broitman, Microstructural evolution of sol-gel derived ZnO thin films, Thin Solid Films 518, 6792-6798 (2010).
[70] L. Chen, G. Henein and J.A. Liddle, Super-hydrophobic and/or super-hydrophilic surfaces made by plasma process, NanoTech Conference & Expo (2009).
[71] K. M. Coakley and M. D. McGehee, Conjugated polymer photovoltaic cells, Chemistry of materials, vol. 16, no. 23, pp. 4533–4542, 2004.
[72] R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, Small bandgap polymers for organic solar cells (polymer material development in the last 5 years), Polymer Reviews, vol. 48, no. 3, pp. 531–582, 2008.
[73] E. Bundgaard and F. C. Krebs, Low band gap polymers for organic photovoltaics, Solar energy materials and solar cells, vol. 91, no. 11, pp. 954–985, 2007.
[74] Letian Dou, Jingbi You, Jun Yang, Chun-Chao Chen, Youjun He, Seiichiro Murase, Tom Moriarty,Keith Emery, Gang Li & Yang Yang,Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,Nature Photonics6, 80–185 (2012).
[75] Maher Al-Ibrahim, Oliver Ambacher, Steffi Sensfuss, and Gerhard Gobsch, Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene, Appl. Phys. Lett. 86, 201120 (2005).
[76] Dian Chen, Atsuhiro Nakahara, Dongguang Wei, Dennis Nordlund, and Thomas P. Russel, P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology, Nano Lett., 2011, 11 (2), pp 561–567.
[77] Hiroyuki Ogo, Toshihiro Yamanaria, Tetsuya Taima, Jun Sakai, Jun Tsukamoto, Yuji Yoshida, Thick polymer blend organic solar cells fabricated by slow drying,Physics Procedia Volume 14, 2011, Pages 231–234.
[78] Tao Song1, Zhongwei Wu, Yingfen Tu, Yizheng Jin and Baoquan Sun, Vertical phase segregation of hybrid poly(3-hexylthiophene) and fullerene derivative composites controlled via velocity of solvent drying, 2011 Semicond. Sci. Technol. 26 034009.
[79] a-Ya Chu, Jianping Lu, Serge Beaupre, Yanguang Zhang, Jean-Remi Pouliot, Salem Wakim, Jiayun Zhou, Mario Leclerc, Zhao Li, Jianfu Ding, and Ye Tao , Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%, J. Am. Chem. Soc., 2011, 133 (12), pp 4250–4253.
[80] Cong Yao, Li-ying Yang, Ya-ling Wang, Wen-jing Qin, Shougen Yin and Feng-ling Zhang, Performance improvement of organic bulk heterojunction solar cells by using dihydroxybenzene as additive, Optoelectronics LettersVolume 7, Number 4, 246-248.
[81] T. Y. Chu et al., Highly efficient polycarbazole-based organic photovoltaic devices, Applied Physics Letters, vol. 95, p. 063304, 2009.
[82] R. F. Service, Outlook brightens for plastic solar cells, Science 332 (2011).
[83] http://en.wikipedia.org/wiki/Zinc_oxide.
[84] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science 291, 2001, 1947-1949.
[85] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Applied Physics Letters 80, 2002, 4232-4234.
[86] X. Liu, X. H. Wu, H. Cao, R. P. H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, Journal of Applied Physics 95, 2004, 3141-3147.
[87] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, P. H. Fleming, Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy, Applied Physics Letters 81, 2002, 3046-3048.
[88] Q. C. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks, R. P. H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chemistry of Materials 17, 2005, 1001-1006.
[89] M. Guo, P. Diao, X. D. Wang, S. M. Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films, Journal of Solid State Chemistry 178, 2005, 3210-3215.
[90] L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Advanced Materials 15, 2003, 464-466.
[91] J.-S. Huang, C.-F. Lin, Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing, Journal of Applied Physics 103, 2008, 014304.
[92] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, Journal of Physical Chemistry B 105, 2001, 3350-3352.
[93] 劉芳佐,劉進興,Gas sensing properties of ZnO nanrod prepared by hydrothermal method,碩士論文
[94] H.-Y. Chen et al., Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat Photon, vol. 3, no. 11, pp. 649-653, Nov. 2009.
[95] Y. Liang et al., For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Advanced Materials, vol. 22, no. 20, p. E135–E138, 2010.
[96] D. S. Germack , C. K. Chan , B. H. Hamadani , L. J. Richter , D. A. Fischer , D. J. Gundlach , D. M. eLongchamp , Appl. Phys. Lett. 2009, 94, 233303.
[97] Jung Yong Kim,Seunguk Noh, Young Min Nam, Jun Young Kim, Jeongkyun Roh, Myeongjin Park,Jason J. Amsden, Do Y. Yoon, Changhee Lee, and Won Ho Jo, Effect of Nanoscale SubPc Interfacial Layer on the Performance of Inverted Polymer Solar Cells Based on P3HT/PC71BM,ACS Appl. Mater. Interfaces 2011, 3, 4279–4285
[98] G. Lu, H. Usta, C. Risko, L. Wang, A. Facchetti, M.A. Ratner and T.J. Marks,
Synthesis, characterization, and transistor response of semiconducting silole
polymers with substantial hole mobility and air stability. Experiment and theory, J. Am. Chem. Soc. 130, 7670-7685 (2008).
[99] D.M. de Leeuw, M.M.J. Simenon, A.R. Brown and R.E.F. Einerhand, Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices, Synth. Met. 87, 53-39 (1997).
[100] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao and M. Leclerc, Toward a rational design of poly(2,7-carbazole) derivatives for solar cells, J. Am. Chem. Soc. 130, 732-734 (2008).
[101] K. Takanezawa, K. Tajima, K. Hashimoto, Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer, Applied Physics Letters 93, 2008, 063308.
[102] C.V. Ramana, O.M. Hussain, B. Srinivasulu Naidu, P.J. Reddy,Spectroscopic characterization of electron-beam evaporated V2O5 thin films,Thin Solid Films Volume 305, Issues 1–2, August 1997, Pages 219–226
[103] G. Lu, H. Usta, C. Risko, L. Wang, A. Facchetti, M.A. Ratner and T.J. Marks, Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. Experiment and theory, J. Am. Chem. Soc. 130, 7670-7685 (2008).
[104] D.M. de Leeuw, M.M.J. Simenon, A.R. Brown and R.E.F. Einerhand, Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices, Synth. Met. 87, 53-39 (1997).
[105] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao and M. Leclerc, Toward a rational design of poly(2,7-carbazole) derivatives for solar cells, J. Am. Chem. Soc. 130, 732-734 (2008).
[106] 周貞佑、林清富博士,Organic-Inorganic Hybrid Solar Cells Based on ZnO Nanorods and Conjugated Polymer ,碩士論文
[107] 陳朝碩、林清富博士,The Influence of Thin Film Morphology on the Device Characteristics of Inverted Polymer Solar Cells,碩士論文
[108] 劉芳佐、劉進興博士,Gas sensing properties of ZnOnanorod prepared by hydrothermal method,碩士論文
[109] L. Liao,H. B. Lu,Size Dependence of Gas Sensitivity of ZnO Nanorods, J. Phys. Chem. C 111,1900(2007)
[110] 施敏,Properties of advanced semiconductor materials, Semiconductor devices,p.31~33
[111] Volodymyr Khranovskyy,Jens Erikson,Anita Lloyd-Spetz,Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films,Thin Solid Films 517 (2009) 2073-2078
[112] G. Heiland, D. Kohl,Physical and chemical aspects of oxidic semiconductor gas sensors,Chemical Sensor Techology, vol. 1, Kodansha,Tokyo,1988,pp.15-38
[113] T.T. Wol’kenstain,The Theory if Electronic Catalysis on Semiconductors, Pergamon,Oxford, 1963.
[114] Y.J.Xing,Z.H. Xi,X.D. Zhang, Nanotubular structures of zinc oxide, Solid State Commun. 129 (2004)671.
[115] W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi,Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanowires,Appl. Phys. Let. 80 (2002)4232.
[116] L.R. Greene,M. Law,J. Goldberger,F. Kim,P.D. Yang, Angew. Che,. Low‐Temperature Wafer‐Scale Production of ZnO Nanowire Arrays,Int. Ed.42 (2003) 3031.
[117] Abu Z. Sadek, Supab Choopun, Wojtek Wlodarski,Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and Hydrocarbon Sensing, IEEE sensors jornaul,7 (2007) 919.
[118] O.Agyeman, C.N. Xu, W. shi,X.G.Zheng,Hierarchical ZnO nanostructures ,Jpn. J. Appl. Phys. 41 (2002) 666.
[119] Zhang K Y, Cheng G and Moskovits M Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,2003 Adv. Mater. 15 997.
[120] https://sites.google.com/site/gmlabgmlab/%E7%B6%A0%E8%89%B2%E5%8C%96%E5%AD%B8%E5%8F%8A%E5%85%B6%E6%87%89%E7%94%A8%E7%B0%A1%E4%BB%8B
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63462-
dc.description.abstract在能源需求大增的時代,太陽能電池成為當前重要的課題;其中高分子太陽能電池不僅生産成本低廉、重量輕,而且能夠橈曲,製成各樣型態的太陽能電池。近年來,在有機太陽能電池的發展下,為了促使主動層中的施體與受體材料接觸面積增加,發展出塊材異質接面(bulk-heterojunction)結構,藉由混合大幅增加施體與受體接觸面積進而提升激子分離機率,然而這種做法雖然成功提升效率,卻存在著無法控制混合的施體與受體在主動層中的分布情形的問題,因此後續研究者為了改善施體與受體在主動層中的垂直分層(morphology)利用了幾種方法,熱處理、慢乾法、在主動層中加添加劑、混和溶劑、加額外電場或是加中介層PCBM在ZnO薄膜與主動層之間,惟獨以溶液製程的中介層PCBM簡單又可大面積製程且不受基板限制,且無須考慮高分子材料是否具有結晶性質,只需在ZnO與主動層之間懸塗上中介層PCBM,就可借由PCBM的表面能量將主動層中的PCBM往其方向聚集,然而這方法雖然簡單卻也存在一大問題,中介層PCBM本身溶於有機溶劑,因此在旋塗以有機溶劑配置的主動層時,會將中介層PCBM清洗掉,使得原先塗佈的中介層PCBM蕩然無存,這使得中介層PCBM變成一無法控制的參數,且未能達到因有的效果。
Amare Benor Belay et al.發表了將PC61BM薄膜放入UV-ozone經由紫外光及臭氧的處理,產生C-O-C的鍵結,使得PCBM產生交鍊,可降低對有機溶劑的溶解度,因此本篇研究將PC61BM交鏈化,使得其不容易溶於有機溶劑,如此一來可有效控制中介層PCBM的參數,再將交鏈化的PC61BM做為中介層,製作以P3HT:PC61BM為主動層的倒置太陽能電池,而透過這個研究卻又有一重要發現,交鏈化後的PCBM雖然確實不被有機溶劑所清蝕,但卻因PCBM表面出現大量的OH鍵,使得電子傳輸時產生了電荷累積的現象,導致在JV curve中出現了S shape的情形,反而使得效率降低。為了降低PCBM表面的OH鍵,我們找出了經由UV-ozone處理使PC61BM交鏈化的最短時間,1分鐘,然而元件依然有S shape產生。因此為了改善這現象,本研究利用獨創的方式,在經由UV-ozone處理完後的中介層PC61BM表面旋塗0.1%的Triton X100,透過水滴接觸角的量測,原PC61BM表面與水接觸角為27度,經由UV-ozone處理1分鐘後變為13度,而在由Triton X100旋塗在其表面後,又恢復成了27度。利用此方法成功的消除S shape的,不但比他種同樣消除OH鍵的方式來的更為簡便並成功的提升了元件開路電壓、短路電流、填充因子至67%和元件效率至3.44%。
而在搭配低能隙高分子材料,多以PC71BM與其混層,因此我們同時也研究將中介層PC71BM交鏈化,並在以PBDTT-DPP: PC71BM為主動層的倒置結構中,加入此交鏈化的PC71BM層,並用Triton X100消除其表面OH鍵,使得元件效率從2.8%提升至3.8%。而為了提升短路電流,在氧化鋅種子層上生長氧化鋅奈米柱,透過不同的氧化鋅種子層濃度0.3M~0.6M控制奈米柱的疏密程度,從而影響主動層滲入柱間的狀況,使短路電流提升至14 mA/cm2且元件效率達到4%以上,而在奈米柱與主動層間旋塗的中介層PC71BM並交鏈化,藉由其改善主動層的垂直分層,高分子層與氧化鋅介面的改善,使得元件短路電流提升至17 mA/cm2,更能預防氧化鋅奈米柱直接與施體材料接觸而降低Voc,整體元件效率提升超過5%。
而普遍長柱元件的填充因子(FF)普遍來的較低~40%,雖然在加中介層後有所提升,但並未有大突破,因此我們嘗試了換不同的金屬氧化層V2O5,以及減少氧化鋅奈米柱生長時間,但都未能有效提升填充因子。而後藉由控制氧化鋅奈米柱在氮氣下退火溫度,在退火溫度為175度、1小時下,成功的使得填充因子提升至~53%,而在此倒置結構與奈米柱結構元件效率提升至6.4%。
zh_TW
dc.description.abstractUsing PC61BM as an interlayer between ZnO and the P3HT/PC61BM layer has been promoted as a step to improve the morphology of the active layer; however, the interlayer PCBM is highly soluble in organic solvents and can easily mix with the organic active layer. This paper reports a UV-ozone treatment process to polymerize PCBM, making PCBM insoluble in organic solvents. PCBM’s thin film can be polymerized in 60 s, thereby controlling the parameters of the interlayer. However, the polymerized PCBM has –OH on the surface, which will affect electronic transmission. Our investigation shows that the longer PCBM is treated with UV-ozone, the more –OH exists on the PCBM surface and the worse the performance of the device is. Thus, we explored a technique to resolve the problem. A spin-coated surfactant —Triton X100 (0.1%)—on the polymerized PCBM layer process removes the surface –OH caused by the polymerization of PCBM. Compared to other methods for eliminating the –OH (e.g., annealing the polymerized PCBM thin film or adding Triton X100 to the solvent of the active layer), the spin-coated Triton X100 shows the best performance. The FF is promoted to 67%, and the PCE is promoted to 3.44%. Therefore, the interlayer PCBM can be controlled and the disadvantage in using polymerized PCBM can be eliminated. In recently the low band gap polymer materials are often mixed with PC71BM. In this study, the interlayer PC71BM is polymerized through UV-ozone treatment, and adds in the inverted structure of the active layer PBDTT-DPP: PC71BM. The device with interlayer PC71BM is spin coated Triton X100 to eliminate the surface OH bonds, making the device efficiency from 2.8% to 3.8%, but short-circuit current is not more than 10 mA/cm2.
We have grown ZnO nanorods structure to enhance the short-circuit current of devices, the short-circuit current is effectively increased by more than 12 mA/cm2 ,but the open circuit voltage drops to 0.622 V. In order to protect the donor material in contact with zinc oxide nanorods, the polymerized interlayer PC71BM has become particularly important. The interlayer PC71BM successfully reduced the contact probability of the donor material and zinc oxide nanorods. Therefor, the open circuit voltage increased to 0.729 V, the short-circuit current density increased from 12 mA/cm2 to 15 mA/cm2 and device efficiency enhanced from 4% to 5%. Finally, the device with interlayr PC71BM performance has enhanced due to the annealing of ZnO nanorod for 1hour at 175 degree, thus the device short-circuit current density has reached 17.199 mA/cm2, open-circuit voltage maintained in the 0.72 V, FF increased from 40% to 52%, and device efficiency reached 6.4%.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:43:23Z (GMT). No. of bitstreams: 1
ntu-101-R99941085-1.pdf: 5347253 bytes, checksum: 9ca25fa60640bb5409d837d784c873f8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1 簡介 1
1.2 太陽光能介紹 4
1.3 太陽能電池的發展 7
第二章 有機太陽能電池原理及結構 10
2.1 等效電路模型與元件分析方法 10
2.2 實驗中元件所使用的倒置結構(inverted structure) 13
2.3 有機太陽能電池的發展 14
2.3.1 單層有機太陽能電池 15
2.3.2 雙層結構有機太陽能電池 16
2.3.3 本體異質接面結構有機太陽能電池 18
第三章 中介層PC61BM交鏈化並解決產生的S shape 23
3.1 實驗目的 23
3.2 倒置結構PV2000太陽能電池製備 25
3.2.1 元件的材料準備及介紹 25
3.2.2 元件的製備流程: 27
3.3 結果與討論 30
3.3.1 中介層PCBM塗佈轉速600、1000 rpm的薄膜經UV-ozone處理 30
3.3.2 添加中介層PCBM製作倒置太陽能電池元件 36
3.4 消除經由UV-ozone處理後的中介層PCBM表面OH鍵 42
3.4.1 實驗目的 42
3.4.2 溶液配置 43
3.4.3 實驗製程 44
3.4.4 旋塗Triton X100後水滴接觸角的變化 44
3.4.5 旋塗Triton X100消除PCBM表面OH鍵,提升元件效率 45
3.5 結論 47
第四章 中介層PC71BM交鏈化後在低能隙材料上的應用 48
4.1 實驗目的 48
4.2 實驗流程 50
4.2.1 元件的材料準備及介紹 50
4.2.2 元件的製備流程 52
4.3 中介層PC71BM交鏈化 55
4.3.1 中介層PC71BM薄膜經由UV-ozone處理後交鏈化 55
4.3.2 添加交鏈化的中介層PC71BM於製作低能隙材料倒置結構太陽能電池中 56
4.4 生長氧化鋅奈米柱結構增加載子收集與傳導能力,並利用交鏈化後的PC71BM提升元件效率 59
4.4.1 實驗目的 59
4.4.2 奈米柱陣列 59
4.4.3 溶液配置 61
4.4.4 元件製作流程 62
4.4.5 結果與討論 64
4.5 中介層PC61BM與中介層PC71BM的比較 75
4.5.1 中介層PC61BM與中介層PC71BM的不同 75
4.5.2 中介層PC61BM與中介層PC71BM的相同 76
4.6 結論 77
第五章 提升生長氧化鋅奈米住元件的填充因子 79
5.1 實驗目的 79
5.2 不同的金屬氧化物當主動層與銀電極的中介層 80
5.2.1 溶液配置 80
5.2.2 實驗流程 80
5.2.3 結果與討論 82
5.3 超音波振洗機成長氧化鋅奈米柱 84
5.3.1 元件製作過程 84
5.3.2 結果與討論 86
5.4 氧化鋅奈米柱生長時間變化 91
5.4.1 元件製作過程 91
5.4.2 結果與討論 93
5.5 氮氣退火氧化鋅奈米柱減少其缺陷(defects)提升導電度 94
5.5.1 實驗目的 94
5.5.2 元件製作過程 95
5.5.3 結果與討論 97
5.6 結論 99
第六章 總結與未來展望 100
6.1結論 100
6.2建議與未來展望 101
參考資料…………………………………………………………………………………….102
dc.language.isozh-TW
dc.subjectUV-ozonezh_TW
dc.subjectPCBM交鏈化zh_TW
dc.subject導致結構太陽能電池zh_TW
dc.subject中介層PCBMzh_TW
dc.subject氧化鋅奈米柱zh_TW
dc.subject氮氣退火zh_TW
dc.subjectinterlayer PCBMen
dc.subjectpolymerizationen
dc.subjectUV-ozoneen
dc.subjectinverted structureen
dc.subjectZnO NRen
dc.title中介層PCBM交鏈化與應用在倒置結構太陽能電池上的處理zh_TW
dc.titlePolymerization and Treatment of the Interlayer PCBM for Solar Cellsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周必泰,黃鼎偉,陳奕君,陳協志
dc.subject.keyword中介層PCBM,PCBM交鏈化,導致結構太陽能電池,氧化鋅奈米柱,氮氣退火,UV-ozone,zh_TW
dc.subject.keywordinterlayer PCBM,polymerization,UV-ozone,inverted structure,ZnO NR,en
dc.relation.page117
dc.rights.note有償授權
dc.date.accepted2012-08-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved