請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6345
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳富春 | |
dc.contributor.author | Shih-Cheng Wu | en |
dc.contributor.author | 吳世正 | zh_TW |
dc.date.accessioned | 2021-05-16T16:26:40Z | - |
dc.date.available | 2015-09-02 | |
dc.date.available | 2021-05-16T16:26:40Z | - |
dc.date.copyright | 2013-09-02 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-19 | |
dc.identifier.citation | 參考文獻
Elliott, A., and Brooks, N.H. (1997a) Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments, Water Resour. Res., 33, 137–151. Elliott, A., and Brooks, N.H. (1997b) Transfer of nonsorbing solutes to a streambed with bed forms: Theory, Water Resour. Res., 33, 123–136. Haam ,S. J., Brodkey, R. S., Fort, I., Klaboch,L., Placnik, M. and Vanecek, V.(2000) Laser Doppler anemometry measurements in an index of refraction matched column in the presence of dispersed beads -Part I. Int. J. Mutiphase Flow 26,1401-1418. Huang, M.Y.F., A.Y.L. Huang, R.H. Chen, and H. Capart (2009), Automated tracking of liquid velocities in a refractive index matched porous medium. Journal of the Chinese Institute of Engineers, 32(6), 877-882. Lennon, J.M. and Hill, J.M.(2006) Particle Image Velocity Measurements of Undular and Hydraulic Jumps. Journal of Hydraulic Engineering, 132, No.12 McLean, S. R. and Nikora, V. I.,(2006) Characteristics of turbulent unidirectional flow over rough beds: Double-averaging perspective with particular focus on sand dunes and gravel beds Water Resour. Res., 42, W10409 Newson, M. D. and Newson, C. L. (2000) Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography 24(2), 195–217 Omesova, M, and Helešic, J, (2007) Vertical distribution of invertebrates in bed sediments of a gravel stream in the Czech Republic. International Review of Hydrobiology, 92, Issue 4-5, 480-490 Qian, Q., Voller, V.R., and Stefan, H.G.(2008) A vertical dispersion model for solute exchange induced by underflow and periodic hyporheic flow in a stream gravel bed. Water Resour. Res.,. 44, W07422 Reid, M.A. and Thoms, M.C.(2008) Surface flowtypes,near-bed hydraulics and the distribution of stream macroinvertebrates. Biogeosciences Discuss., 5, 1175–1204 Spinewine, B., Capart, H., Larcher, M., and Zech, Y.(2003) Three-dimensional VoronoI imaging methods for the measurements of near-wall particulate flows. Experiments in Fluids, 34(2), 227-241 Tonina, D. and Buffington, J.M. (2007) Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling. Water Resour. Res., 43, W01421 Tsorng, S.J., H. Capart, J.S. Lai, and D.L. Young (2006), Three-dimensional tracking of the long time trajectories of suspended particles in a lid-driven cavity flow. Experiments in Fluids, 40(2), 314–328. U.S. Bureau of Reclamation (1955), Research Studies on Stilling Basins, Energy Dissipaters, and Associated Appurtenances, Hydraulic Lab Report Hyd.,-339. White, F. M. (1998), Fluid Mechanics. McGraw Hill, New York, N.Y. Williams, D.D. and H.B.N. Hynes (1974), The occurrence of benthos deep in the substratum of stream, Freshwater Biol, 4, 233–256. 陳彥呈 《三維之固液二相流其內部顆粒流場與及granular temperature量測》,國立臺灣大學土木工程學系碩士論文,2008年7月。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6345 | - |
dc.description.abstract | 本文的研究目的在於探討非「破碎型駐波水流型態(unbroken standing wave)」對淺瀨棲地的影響。前輩學者研究河川底下礫石中的流場時,一般假設推動礫石間河川與地下水間交互作用的壓力差是來自水流通過不平整的河川底床地形或形貌所造成的壓力差。不過,因為無法直接測量底床內的流場,所以過去的研究主要是利用觀測液體濃度變化的方式,來推論自由液面流與孔隙介質間交換流量,間接驗證壓力差來源。
有別於過往的推論,筆者在可利用水流型態(flow type)進行河川棲地分類的脈絡下,提出另一種假設:淺瀨區域的表面波(非破碎型駐波)為震盪型水躍(undular hydraulic jump),此震盪型水躍會在底床表面產生壓力變化,可作為自由液面與孔隙間液體交換的驅力。為驗證此假設,以能夠直接測量液體在孔隙間的流場的「同折射率材料」與「粒子追蹤測速技術」作為實驗方法,並透過時間平均的Navier-Stokes方程計算近床區的壓力變化,最後再以線性管流網絡模式解釋壓力變化對孔隙介質流的影響。 透過實驗,可發現震盪型水躍底下存在穩定的液體交換結構,再以Navier-Stokes方程進行流場分析,顯示液體會在高壓區進入孔隙介質,並在低壓區回到自由液面流。管流網絡模式亦說明分析所得的壓力分布,足以產生液體交換結構,驗證了先前的假設。這個假設的成立,顯示以非破碎型駐波作為淺瀨的分類方法具有物理意義。 | zh_TW |
dc.description.abstract | This study investigates the effect of unbroken standing waves on riffles. In the previous studies, the researchers believe that exchange of hyporheic zone caused by the pressure difference because of different fluvial morphological and bed form. Because they can’t measure the fluid velocity field inside sediment bed directly, they use concentration change to study the exchange flow rate between surface flow and porous medium flow.
Newson & Newson (2000) believe the biotopes can be classified according to the flow types on the surface of river. We suppose unbroken standing wave on riffles are undular hydraulic jump and a pressure variation under the waves is drivers of fluid exchange between surface flow and porous medium flow. In order to prove this thought, we use Refractive Index Matching (RIM) materials and Particle Tracking Velocimetry (PTV) technique to set up a experiment to measure the velocity field in porous medium under undular hydraulic jump. According to our research, we find out there are a stable downwelling fluxes upwelling fluxes on porous medium surface. We calculate the pressure distribution on porous medium surface by using time-average Navier-Stokes eqns. and find out up and down welling fluxes are corresponding to low and high pressure zone. The velocity field in porous medium also can be simulated by our Pipe Flow Network Analysis model. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:26:40Z (GMT). No. of bitstreams: 1 ntu-102-R98622029-1.pdf: 8992877 bytes, checksum: e4768677f5d21d1336bdf4c24c6b5655 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目 錄
中文摘要……………………………………………………………………………...i 英文摘要……………………………………………………………………………..ii 目錄………………………………………………………………………………….iii 圖目錄……………………………………………………………………………….iv 表目錄……………………………………………………………………………....vii 符號表……………………………………………………………………………...viii 第一章 前言……………………………………………………………………...1-1 1.1 研究動機 ……………………………………………………………………...1-1 1.2 背景介紹 ……………………………………………………………………...1-2 1.3 文獻回顧 ……………………………………………………………………...1-4 1.4 論文架構 ……………………………………………………………………...1-9 第二章 研究方法………………………………………………………………...2-1 2.1 實驗材料 ……………………………………………………………………...2-1 2.2 實驗設置 ……………………………………………………………………...2-3 2.3實驗步驟 ……………………………………………………………………..2-10 2.4 實驗項目 …………………………………………………………………….2-12 2.5 粒子追蹤測速 …………………………………………………………….…2-13 2.5.1 粒子追蹤測速原理 ……………………………………………………. 2-13 2.5.2自由液面流速量測驗證 ………………………………………………...2-21 2.5.3孔隙間流速測量驗證 ……………………………………………….......2-25 第三章 結果與討論 …………………………………………………………….3-1 3.1 自由液面流各組流場之測量結果 …………………………………………..3-4 3.2 孔隙間流場 …………..……………………………………………………..3-11 3.3 壓力推估 ……………………………………………………………………3-20 3.4 管流網絡模式 ………………………………………………………………3-40 3.5 對於棲地復育應用之啟示 ………………………………………………....3-53 第四章 結論與建議 ……………………………………………………………4-1 4.1 結論 ………………………………………………………………………......4-1. 4.2 建議 ………………………………………………………………………..…4-3 參考文獻 …………………………………………………………………………5-1 | |
dc.language.iso | zh-TW | |
dc.title | 應用同折射率材料與粒子追蹤測速技術探討非破碎駐波水流型態對淺瀨棲地之影響 | zh_TW |
dc.title | Investigating the effect of unbroken standing waves on riffles using RIM materials and PIV | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 卡艾瑋,孫建平,王驥魁 | |
dc.subject.keyword | 非破碎型駐波,淺瀨,震盪型水躍,粒子追蹤測速,同折射率材料, | zh_TW |
dc.subject.keyword | unbroken standing wave,riffle,undular hydraulic jump,Particle Tracking Velocimetry(PTV),Refractive Index Matching(RIM) materials, | en |
dc.relation.page | 98 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 8.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。