請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63399完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馮蟻剛 | |
| dc.contributor.author | Shu-An He | en |
| dc.contributor.author | 何書安 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:39:19Z | - |
| dc.date.available | 2013-10-12 | |
| dc.date.copyright | 2012-10-12 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-09-19 | |
| dc.identifier.citation | [1] K.J. Åström and T. Hägglund, PID Controllers: Theory, Design and Tuning, 2nd edition, Instrument Society of American, Research Triangle Park, NC, 1995.
[2] K.J. Åström and T. Hägglund, Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20 (1984) 645-651. [3] B.C. Kuo and F. Golnaraghi, Automatic Control Systems, eighth edition, Englewood Cliffs NJ: John Wiley & Sons, Inc., 2003. [4] G.F. Franklin, J.D. Powell and E.N. Abbas, Feedback Control of Dynamic Systems, New York, NY: Addison-Wesley Publishing Company, Inc., 1986. [5] G.J. Silva, A. Datta and S.P. Bhattacharyya, PID Controllers for Time-Delay Systems, Boston, MA: Birkhauser, 2004. [6] K. Gu, V.L. Kharitonov and J. Chen, Stability of Time-Delay Systems, Boston, MA: Birkhäuser, 2003. [7] R.E. Bellman and K.L. Cooke, Differential-Difference Equations, New York, NY: Academic Press, 1963. [8] J.P. Richard, Time-delay systems: an overview of some recent advances and open problems, Automatica 39 (2003) 1667-1694. [9] L. Weiss, On the controllability of delay-differential systems, SIAM J. Control 5 (1967) 575-587. [10] S. Yi, P.W. Nelson and A.G. Ulsoy, Controllability and observability of systems of linear delay differential equations via the matrix Lambert W function, IEEE Trans. on Automatic Control 53 (2008) 854-860. [11] S.A. He, and I K. Fong. An iterative method for finding state equation solution of LTI time-delay systems, The 2008 CACS International Automatic Control Conference, Taiwan, Tainan, (Nov. 2008) CD ROM. [12] S.A. He, and I K. Fong. Time-Delay Effects on Controllability in LTI Systems, Proceedings of ICROS-SICE International Joint Conference 2009, Fukuoka, Japan, (Aug. 2009) 327-332. [13] J.R. Rodriguez Vasquez, R. Rivas Perez, J. Sotomayor Moriano and J.R. Peran Gonzalez. System identification of steam pressure in a fire-tube boiler, Computers & Chemical Engineering 32 (2008) 2839-2848. [14] C. Xiang, Q.G. Wang, X. Lu, L.A. Nguyen and T.H. Lee, Stabilization of second-order unstable delay processes by simple controllers, Journal of Process Control 17 (2007) 675-682. [15] S. Xu and J. Lam, Improved delay-dependent stability criteria for time-delay systems, IEEE Trans. on Automatic Control 50 (2005) 384-387. [16] X. Li and C.E. De Souza, Criteria for robust stability and stabilization of uncertain linear systems with state delay, Automatica 33 (1997) 1657-1622. [17] E. Fridman and U. Shaked, An improved stabilization method for linear time- delay systems, IEEE Trans. on Automatic Control 47 (2002) 1931-1937. [18] W.H. Chen, Z.H. Guan and X. Lu, Delay-dependent robust stabilization and H∞-control of uncertain stochastic systems with time-varying delay, IMA Journal of Mathematical Control and Information 21 (2004) 345-358. [19] D.J. Wang, Synthesis of PID controllers for high-order plants with time-delay. Journal of Process Control 19 (2009) 1763-1768. [20] H.P. Huang, C.C. Chen and H.J. Liaw, Set-point weighted PID controller tuning for time-delayed unstable processes, Ind. Eng. Chem. Res. 47 (2008) 6983- 6990. [21] Q.G. Wang, Z. Zhang, K.J. Astrom and L.S. Chek, Guaranteed dominant pole placement with PID controllers. Journal of Process Control 19 (2009) 349-352. [22] C.B. Soh, Generalization of the Hermite-Biehler Theorem and Applications. IEEE Trans. on Automatic Control 35 (1990) 222-225. [23] L.L. Ou, W. D. Zhang and L. Yu, Low-Order Stabilization of LTI Systems with Time Delay. IEEE Trans. on Automatic Control 54 (2009) 774-787. [24] W. Michiels and S.I. Niculescu, Stability and Stabilization of Time Delay Systems: An eigenvalue based approach, Advances in Design and Control, Philadelphia, PA: SIAM, 2007. [25] F.M. Asl and A.G. Ulsoy, Analytical solution of a system of homogeneous delay differential equations via the Lambert function, Proc. American Control Conference, Chicago, IL (2000) 2496-2500. [26] Y.Q. Chen and K.L. Moore, Analytical stability bound for delayed second-order systems with repeating poles using Lambert function W, Automatica 38 (2002) 891-895. [27] C. Hwang and Y.C. Cheng, A note on the use of the Lambert W function in the stability analysis of time-delay systems, Automatica 41 (2005) 1979-1985. [28] E. Jarlebring and T. Damm, The Lambert W function and the spectrum of some multidimensional time-delay systems, Automatica 43 (2007) 2124-2128. [29] S. Yi, P.W. Nelson and A.G. Ulsoy, Analysis and control of time delayed systems via the Lambert W function, Proceedings of the 17th IFAC World Congress, Seoul, Korea (2008) 13414-13419. [30] S. Yi, A.G. Ulsoy and P.W. Nelson, Design of observer-based feedback control for time-delay systems with application to automotive power train control, Journal of the Franklin Institute 347 (2010) 358-376. [31] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth, On the Lambert W function, Advances in Computational Mathematics 5 (1996) 329-359. [32] A.B. Pitcher and R.M. Corless, Quasipolynomial root-finding: A numerical homotopy method, Proceedings of the 2005 Canadian Undergraduate Mathematics Conference, Ontario, Canada, (2005). [33] V. Rǎsvan, Delay independent and delay dependent Aizerman problem, Unsolved Problems in Mathematical Systems and Control Theory, Ed. by V. D. Blondel and A. Megretski, Princeton, NJ: Princeton University Press, 212-220, 2004. [34] W.J. Rugh, Linear System Theory. New York, NY: Prentice Hall, Inc, 1996. [35] C.T. Chen, Linear System Theory and Design, Third Edition, New York, NY: Oxford University Press, 1999. [36] M. Shamsuzzoha and M. Lee, Analytical design of enhanced PID filter controller for integrating and first order unstable processes with time delay, Chemical Engineering Science 63 (2008) 2717- 2731. [37] I.J. Nagrath, and M. Gopal, Control Systems Engineering, New Delhi, India: John Wiley & Sons, Inc., 1985. [38] J.L. Walsh, A generalization of Jensen's Theorem on the zeros of the derivative of a polynomial, Amer. Math. Monthly 62 (1955) 91-93. [39] S. Tarbouriech and M. Turner, Anti-windup design: an overview of some recent advances and open problems, IET Control Theory and Applications 3 (2009) 1-19. [40] Y.Y. Cao, Z. Wang and J. Tang, Analysis and Anti-Windup Design for Time- Delay Systems Subject to Input Saturation, Proceedings of the 2007 IEEE Inter- national Conference on Mechatronics and Automation Harbin, China (Aug. 2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63399 | - |
| dc.description.abstract | 本論文研究具實數極點的輸入非時變延遲系統,所有極點中至多包含一個不穩定極點。由於此種無限維時間延遲系統的特徵多項式為一超越函數,欲求出所有的特徵值十分困難,然而藉由Lambert函數,一階時間延遲系統經輸出回授後的所有特徵值軌跡可以作圖,且此作圖方法可延伸至二階具重根極點的時間延遲系統。透過這些成果,本論文亦討論包含相異實根極點的二階時間延遲系統特徵值軌跡,以及包含PID控制器的多階時間延遲系統之特徵值軌跡。
除建構一階、二階及多階時間延遲系統的特徵值軌跡,本論文還定義與判斷所謂最右邊或領導軌跡,並用以保證所有的閉迴路特徵值皆落在複數平面之左半平面,且此軌跡最左邊的點可用來分析評估輸出響應的效能。因此最右邊或領導軌跡不僅可作為穩定系統的準則,亦可用於分析輸出響應效能。除以上所述之外,本論文尚提出一種新類型之PID控制器,將傳統PD與PID控制器的優勢結合,其設計方法與參數調整皆有完整討論。最後,本論文所有提出的方法與理論將藉由例子與模擬進行說明,以驗證其應用流程與效能。 | zh_TW |
| dc.description.abstract | This dissertation studies linear time-invariant systems with an input delay and only real open-loop poles, in which at most one pole may be unstable. The retarded-type time-delay systems considered are infinite dimensional and have transcendental characteristic equations with an infinite spectrum. It is generally hard to find the entire spectrum of such systems. However, via Lambert function, all eigenvalues of first-order time-delay systems with an output feedback are found, and the method is extended to second-order time-delay systems with repeating poles. Based on these achievements, the eigenvalue-loci of second-order time-delay systems with distinct real poles are constructed, and nth-order time-delay systems with PID-control are discussed.
When eigenvalue-loci of the first, second and nth-order time-delay systems are investigated, the concepts of the rightmost or leading locus is defined and identified. The leading locus can be used not only to derive stabilization criteria but also to analyze the performance of output response. Next, a new type PID-controller, which combines the advantages of conventional PD and PID-control, is proposed. Finally, all proposed methods are tested with examples to illustrate the application process and demonstrate the effectiveness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:39:19Z (GMT). No. of bitstreams: 1 ntu-101-D95921003-1.pdf: 858902 bytes, checksum: b65eb94ab4c6244f324c756af1b23921 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Content iv List of Figures vi List of Tables vi Notations vii Chapter 1 Introduction 1 1.1 Background and Motivation 2 1.2 Contribution of the Dissertation 5 1.3 Organization of the Dissertation 6 Chapter 2 The Lambert Function 7 2.1 Solutions of the Lambert Function 8 2.2 Some Properties of the Lambert Function 12 Chapter 3 Low-Order Time-Delay Systems with P-Control 17 3.1 First-Order Systems 18 3.1.1 The eigenvalue-loci 18 3.1.2 Some control issues 20 3.2 Second-Order Systems with Repeated Open-Loop Poles 25 3.2.1 The eigenvalue-loci 26 3.2.2 Some control issues 28 3.3 Second-Order Systems with Distinct Real Open-Loop Poles 31 3.3.1 The eigenvalue-loci 31 3.3.2 The rightmost eigenvalue 35 3.3.3 Output feedback for system stabilization 36 3.3.4 The response performance 39 3.4 Examples and Simulations 41 3.5 Summary 52 Chapter 4 High-Order Time-Delay Systems with PID-Control 53 4.1 Problem Formulation 54 4.2 Systems Eigenvalue-Loci 56 4.2.1 The leading-locus 56 4.2.2 The eigenvalue-loci 60 4.3 Stabilization and Output Response Performance 72 4.3.1 Stabilization of System 72 4.3.2 Output Response Performance 75 4.4 Examples and Simulations 77 4.5 Summary 85 Chapter 5 A New Type PID-Control 87 5.1 The Controller Structure 88 5.1.1 The controller structure 88 5.1.2 The sigmoid function 90 5.1.3 Stability analysis 92 5.2 Examples and Simulations 95 5.3 Summary 101 Chapter 6 Conclusions and Future Works 103 Reference 105 | |
| dc.language.iso | en | |
| dc.subject | PID控制器 | zh_TW |
| dc.subject | 時間延遲系統 | zh_TW |
| dc.subject | 穩定度 | zh_TW |
| dc.subject | 特徵值 | zh_TW |
| dc.subject | PID-controller | en |
| dc.subject | time-delay system | en |
| dc.subject | stability | en |
| dc.subject | eigenvalue | en |
| dc.title | 以根軌跡法探討具有全實數極點的線性輸入延遲系統之PID控制器設計 | zh_TW |
| dc.title | PID-Controller Design via Eigenvalue-Loci Approach for Linear Input Delay Systems with Real Poles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 傅立成,黃孝平,練光祐,蘇景暉,容志輝 | |
| dc.subject.keyword | 時間延遲系統,穩定度,特徵值,PID控制器, | zh_TW |
| dc.subject.keyword | time-delay system,stability,eigenvalue,PID-controller, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-09-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 838.77 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
