Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63371
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻
dc.contributor.authorChueh-Hung Wuen
dc.contributor.author吳爵宏zh_TW
dc.date.accessioned2021-06-16T16:37:36Z-
dc.date.available2020-06-09
dc.date.copyright2020-06-09
dc.date.issued2020
dc.date.submitted2020-04-27
dc.identifier.citation1. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev, 2001. 53(3): p. 321-39.
2. Kost, J. and R. Langer, Responsive polymeric delivery systems. Adv Drug Deliv Rev, 2001. 46(1-3): p. 125-48.
3. Hock, J.M. and I. Gera, Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J Bone Miner Res, 1992. 7(1): p. 65-72.
4. Huebsch, N., et al., Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci U S A, 2014. 111(27): p. 9762-7.
5. Farra, R., et al., First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med, 2012. 4(122): p. 122ra21.
6. Shamay, Y., et al., Light induced drug delivery into cancer cells. Biomaterials, 2011. 32(5): p. 1377-86.
7. Ninomiya, K., et al., Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer. Ultrason Sonochem, 2014. 21(1): p. 310-6.
8. Li, Y., et al., Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew Chem Int Ed Engl, 2012. 51(12): p. 2864-9.
9. Schmaljohann, D., Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev, 2006. 58(15): p. 1655-70.
10. Jiang, H., K. Tovar-Carrillo, and T. Kobayashi, Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix. Ultrason Sonochem, 2016. 32: p. 398-406.
11. Mura, S., J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013. 12(11): p. 991-1003.
12. Ninomiya, K., et al., Targeted and ultrasound-triggered drug delivery using liposomes co-modified with cancer cell-targeting aptamers and a thermosensitive polymer. Ultrason Sonochem, 2014. 21(4): p. 1482-8.
13. Wu, C.H., et al., Ultrasound-responsive NIPAM-based hydrogels with tunable profile of controlled release of large molecules. Ultrasonics, 2018. 83: p. 157-163.
14. Jiang, H. and T. Kobayashi, Ultrasound stimulated release of gallic acid from chitin hydrogel matrix. Mater Sci Eng C Mater Biol Appl, 2017. 75: p. 478-486.
15. Moncion, A., et al., In vitro and in vivo assessment of controlled release and degradation of acoustically responsive scaffolds. Acta Biomater, 2016. 46: p. 221-233.
16. Moncion, A., et al., Sequential Payload Release from Acoustically-Responsive Scaffolds Using Focused Ultrasound. Ultrasound Med Biol, 2018.
17. Mitragotri, S., Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov, 2005. 4(3): p. 255-60.
18. Epstein-Barash, H., et al., A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials, 2010. 31(19): p. 5208-17.
19. Kearney, C.J., et al., Switchable Release of Entrapped Nanoparticles from Alginate Hydrogels. Adv Healthc Mater, 2015. 4(11): p. 1634-9.
20. Ordeig, O., et al., An implantable compound-releasing capsule triggered on demand by ultrasound. Sci Rep, 2016. 6: p. 22803.
21. Sun, M.K., et al., Reusable tissue-mimicking hydrogel phantoms for focused ultrasound ablation. Ultrason Sonochem, 2015. 23: p. 399-405.
22. Shieh, J., et al., Acrylic acid controlled reusable temperature-sensitive hydrogel phantoms for thermal ablation therapy. Applied Thermal Engineering, 2014. 62(2): p. 322-329.
23. Chang, C., et al., Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym, 2013. 91(1): p. 7-13.
24. Murdan, S., Electro-responsive drug delivery from hydrogels. J Control Release, 2003. 92(1-2): p. 1-17.
25. Ta, H.T., et al., A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials, 2009. 30(27): p. 4815-23.
26. He, C., S.W. Kim, and D.S. Lee, In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release, 2008. 127(3): p. 189-207.
27. Jiang, Y., et al., Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014. 35(18): p. 4969-85.
28. Luo, Y., K.R. Kirker, and G.D. Prestwich, Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release, 2000. 69(1): p. 169-84.
29. Seliktar, D., Designing cell-compatible hydrogels for biomedical applications. Science, 2012. 336(6085): p. 1124-8.
30. Wang, L.L., et al., Injectable and protease-degradable hydrogel for siRNA sequestration and triggered delivery to the heart. J Control Release, 2018. 285: p. 152-161.
31. Hoque, J., et al., Dual Function Injectable Hydrogel for Controlled Release of Antibiotic and Local Antibacterial Therapy. Biomacromolecules, 2018. 19(2): p. 267-278.
32. Jin, H., et al., Tumor Ablation and Therapeutic Immunity Induction by an Injectable Peptide Hydrogel. ACS Nano, 2018. 12(4): p. 3295-3310.
33. Rahimi, S., et al., Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves. Biomed Microdevices, 2011. 13(2): p. 267-77.
34. Shah, R.N., et al., Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci U S A, 2010. 107(8): p. 3293-8.
35. Seelbach, R.J., et al., Injectable Hyaluronan Hydrogels with Peptide-Binding Dendrimers Modulate the Controlled Release of BMP-2 and TGF-beta1. Macromol Biosci, 2015. 15(8): p. 1035-44.
36. Qu, Y., et al., Injectable and Thermosensitive Hydrogel and PDLLA Electrospun Nanofiber Membrane Composites for Guided Spinal Fusion. ACS Appl Mater Interfaces, 2018. 10(5): p. 4462-4470.
37. Shah, S., et al., Fluorescence properties of doxorubicin in PBS buffer and PVA films. J Photochem Photobiol B, 2017. 170: p. 65-69.
38. Schild, H.G., Poly (N-Isopropylacrylamide) - Experiment, Theory and Application. Progress in Polymer Science, 1992. 17(2): p. 163-249.
39. Hu, C.C., et al., Controlled release bevacizumab in thermoresponsive hydrogel found to inhibit angiogenesis. Biomed Mater Eng, 2014. 24(6): p. 1941-50.
40. Peng, K.T., et al., Treatment of critically sized femoral defects with recombinant BMP-2 delivered by a modified mPEG-PLGA biodegradable thermosensitive hydrogel. BMC Musculoskelet Disord, 2016. 17: p. 286.
41. Assoian, R.K., et al., Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem, 1983. 258(11): p. 7155-60.
42. Hoyos, M. and A. Castro, Controlling the acoustic streaming by pulsed ultrasounds. Ultrasonics, 2013. 53(1): p. 70-6.
43. Coughlan, D.C., F.P. Quilty, and O.I. Corrigan, Effect of drug physicochemical properties on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-isopropylacrylamide) hydrogels. J Control Release, 2004. 98(1): p. 97-114.
44. Wu, C.H., et al., One injection for one-week controlled release: In vitro and in vivo assessment of ultrasound-triggered drug release from injectable thermoresponsive biocompatible hydrogels. Ultrason Sonochem, 2020. 62: p. 104875.
45. Peppas, N.A., et al., Poly(ethylene glycol)-containing hydrogels in drug delivery. J Control Release, 1999. 62(1-2): p. 81-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63371-
dc.description.abstract生物體內的正常生理功能,在特定狀況下需間歇性而非持續性的生物活性物質釋放才能完成,例如目前在臨床上用來治療嚴重的骨質疏鬆,是採用一天一次的副甲狀腺素施予(持續的副甲狀腺素反而破壞骨骼結構),由於合成副甲狀腺素是一種胜肽類藥物,使用口服方式會被消化酵素分解。因此這類治療除價格昂貴,最大的問題是病人需每日接受注射,很不方便且需忍受每天接受注射之疼痛感。如何減少注射次數,並達成週期性升高的藥物濃度,是臨床上重要的需求。
在本研究中嘗試建立一個釋藥系統,該系統以溫感兩相水膠為基礎,將目標藥物包住,此水膠在常溫下呈液態,不需切開皮膚,可以注射方式注入體內,溫度升至體溫時轉為膠態,停留在注射部位而不會流至他處,而內含藥在無外特殊刺激下進行局部緩釋,僅在超音波刺激之狀況下,才將其內含藥物釋放發揮作用,希望減少病人每日注射之不適。
首先應用較熟悉的雙相水膠(NIPAM-based),並以適當的超音波參數以刺激大分子釋放,發現只要調整NIPAM和MBAm之間量的不同,便可調控牛血清白蛋白和葡聚糖(分子量:3000-5000)在有超音波和無超音波刺激下釋放量差距的大小,初步證實此構想之可行性。
由於 NIPAM 降解後仍有細胞毒性,我們找到一種生物相容的mPEG-PLGA-BOX 水膠,且其液態及膠態之間的相變明顯,有利以注射方式將釋藥系統植入生體內。此水膠控制釋放系統,可包覆小分子(阿黴素,分子量:580)或大分子(異硫氰酸螢光素-葡聚糖,分子量:20000)藥物並緩釋至少七天,而在適當的超音波參數刺激下,在生體外可達基礎釋放量之70倍。
而此水膠可以臨床常用的針頭注射,在小鼠皮下可觀察到過了一週後仍將藥物包覆在原注射處,有助於局部的藥物釋放,而在適當的超音波參數刺激下,在生體內亦可達基礎釋放量之10倍。
本研究首度將可注射性生物相容溫感水膠和超音波刺激釋放兩個概念合而為一,並在生體外及生體內證實其可行性。此系統在未來可應用在「平時血中低濃度,需要時高濃度」才有最佳作用之藥物,例如胰島素、各種荷爾蒙及某些抗生素等。
zh_TW
dc.description.abstractEpisodic release of bioactive compounds plays an important role in biological systems. “On-demand” release systems which based on polymeric materials and activated by external stimuli may provide the necessary functionality.
For proof of this concept, firstly an ultrasound-responsive hydrogel based on N-isopropylacrylamide (NIPAM) and N,N’-methylenebisacrylamide (MBAm) was proposed, which is suitable for triggered release of two large molecules: bovine serum albumin (BSA, 66 kDa) and dextran (3-5 kDa). It is shown that the release amount of these two large molecules increased with increasing hydrogel temperature, and the application of ultrasound further increased the release. By simply adjusting the contents of NIPAM and MBAm, the difference of BSA release between the presence and absence of ultrasound could be adjusted from 1.5 to 84 folds. There was also a positive correlation between the ultrasound intensity and release amount. These properties made the NIPAM-based hydrogel a tunable platform for focal drug delivery.
Further, an injectable, biocompatible, and thermosensitive hydrogel system for ultrasound (US)-triggered drug release was investigated. An mPEG-PLGA-BOX block copolymer hydrogel was synthesized. The viscosity of 15 wt% hydrogel is 0.03 Pa*s at 25 °C (liquid form) and 34.37 Pa*s at 37 °C (gel form). Baseline and US-responsive in vitro release profile of a small molecule (doxorubicin, M.W. 580) and that of a large molecule (FITC-dextran, M.W. 20000), from the hydrogel, was tested. A constant baseline release was observed in vitro for 7 d. When triggered by US (1 MHz, continuous, 0.4 W/cm2), the release rate increased by approximately 70 times. Without US, the release rate returned to baseline.

Baseline and US-responsive in vivo release profile of doxorubicin was tested by subcutaneous injection in the back of mice and rats. Following injection into the subcutaneous layer, in vivo results also suggested that the hydrogels remained in situ and provided a steady release for at least 7 d; in the presence of the US-trigger, in vivo release from the hydrogel increased by approximately 10 times.
Therefore, the mPEG-PLGA-BOX block copolymer hydrogel may serve as an injectable, biocompatible, and thermosensitive hydrogel system that is applicable for US-triggered drug release. This system may be suitable for drugs which “on-demand” release is necessary, such as insulin, certain hormones or antibiotics.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:37:36Z (GMT). No. of bitstreams: 1
ntu-109-D01548003-1.pdf: 1874103 bytes, checksum: 50460c97ddb3b3a364e23fb2e153aabf (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
Chapter 2 Materials and methods 6
2.1 Preparation of NIPAM-based hydrogels 6
2.2 Opacity profiles of hydrogels at different temperatures and with different NIPAM/MBAm weight combinations 7
2.3 Release profiles of hydrogels with different NIPAM/MBAm weight combinations 7
2.4 US-triggered release profiles of NIPAM hydrogels 9
2.5 NIPAM hydrogel microstructures below and above the cloud point 9
2.6 Cell viability of the NIPAM hydrogel 10
2.7 Bio- and chemical materials for mPEG-PLGA-BOX block copolymer hydrogel experiments 10
2.8 Instruments and devices for mPEG-PLGA-BOX block copolymer hydrogel experiments 11
2.9 Characteristics of the mPEG-PLGA-BOX diblock copolymer 12
2.9.1 Synthesis of mPEG-PLGA-BOX diblock copolymer 12
2.9.2 Cytotoxicity analysis of the mPEG-PLGA-BOX diblock copolymer 13
2.9.3 Effect of temperature on gel strength and viscosity 14
2.9.4 Comparison of the viscosity of the hydrogel and hyaluronic acid 15
2.9.5 Precipitation-gel-sol phase transition determination 15
2.10 In vitro release profile of mPEG-PLGA-BOX diblock copolymer for doxorubicin and FITC-dextran 16
2.10.1 The baseline in vitro release profile 16
2.10.2 US-responsive in vitro release profile 16
2.11 In vivo release profile of mPEG-PLGA-BOX diblock copolymer for doxorubicin 18
2.11.1 In vivo thermal effects of ultrasound on hydrogel 18
2.11.2 In vivo stability of hydrogel 18
2.11.3 In vivo retention of doxorubicin in hydrogel, hyaluronic acid, and normal saline 19
2.11.4 In vivo slow release of doxorubicin from the hydrogel 19
2.11.5 In vivo US-responsive release of doxorubicin from the hydrogel 20
2.12 Statistics 20
Chapter 3 Results 21
3.1 NIPAM hydrogel characteristics 21
3.2 Release profiles of hydrogels with different NIPAM/MBAm weight combinations 23
3.3 US-triggered release profiles of NIPAM hydrogels 25
3.4 NIPAM hydrogel microstructures below and above the cloud point 27
3.5 Cytocompatibility of NIPAM hydrogel 28
3.6 Characteristics of PEG-PLGA-BOX diblock copolymer 29
3.6.1 Cytotoxicity 29
3.6.2 Effect of temperature on gel strength and viscosity 29
3.6.3 Decreasing fluidity of the thermoresponsive hydrogel 31
3.6.4 Precipitation-gel-sol phase transition determination 32
3.7 In vitro release profile of PEG-PLGA-BOX diblock copolymer for doxorubicin and FITC-dextran 33
3.7.1 Baseline in vitro release profiles 33
3.7.2 US-responsive in vitro release profiles 33
3.8 In vivo release profile of PEG-PLGA-BOX diblock copolymer for doxorubicin 36
3.8.1 In vivo thermal effects of ultrasound on hydrogel 36
3.8.2 In vivo stability of the hydrogel 37
3.8.3 Comparison of in vivo retention of hydrogel, hyaluronic acid, and normal saline 38
3.8.4 In vivo slow release of doxorubicin from the hydrogel 39
3.8.5 In vivo US-responsive release of doxorubicin from the hydrogel 40
Chapter 4 Discussion 41
Chapter 5 Conclusion 46
REFERENCES 47
dc.language.isoen
dc.title以超音波刺激可注射溫感生物相容水膠之藥物釋放zh_TW
dc.titleUltrasound-triggered drug release from injectable thermoresponsive biocompatible hydrogelsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.coadvisor陳文翔
dc.contributor.oralexamcommittee王至弘,黃義侑,林頌然
dc.subject.keyword溫感,水膠,超音波,緩釋,控制釋放,相變,zh_TW
dc.subject.keywordthermoresponsive,hydrogel,ultrasound,sustained release,controlled release,phase transition,en
dc.relation.page51
dc.identifier.doi10.6342/NTU202000776
dc.rights.note有償授權
dc.date.accepted2020-04-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  目前未授權公開取用
1.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved