請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63364
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙聖德(Sheng-Der Chao) | |
dc.contributor.author | Chih-Hsin Chen | en |
dc.contributor.author | 陳志昕 | zh_TW |
dc.date.accessioned | 2021-06-16T16:37:13Z | - |
dc.date.available | 2017-11-22 | |
dc.date.copyright | 2012-11-22 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-10-11 | |
dc.identifier.citation | 參考文獻
[1] Y. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, 'Rolled-up Nanotech on Polymers: From Basic Perception to Self-Propelled Catalytic Microengines', Chem Soc Rev, 40 (2011), 2109-19. [2] Schliwa M, Woehlke G. Molecular motors. Nature, (2003), 759–765 [3] E. Gajewski, D.K. Steckler, and R.N. Goldberg, 'Thermodynamics of the Hydrolysis of Adenosine 5'-Triphosphate to Adenosine 5'-Diphosphate', Journal of Biological Chemistry, 261 (1986), 12733-37. [4] Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th ed. New York: Garland Science, (2002) [5] W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, 'Catalytic Nanomotors: Autonomous Movement of Striped Nanorods', Journal of the American Chemical Society, 126 (2004), 13424-31. [6] J. G. Gibbs, and Y. P. Zhao, 'Autonomously Motile Catalytic Nanomotors by Bubble Propulsion', Applied Physics Letters, 94 (2009), 163104. [7] A. A. Solovev, Y. Mei, E. Bermudez Urena, G. Huang, and O. G. Schmidt, 'Catalytic Microtubular Jet Engines Self-Propelled by Accumulated Gas Bubbles', Small, 5 (2009), 1688-92. [8] R. F. Ismagilov, A. Schwartz, N. Bowden, and G. M. Whitesides, 'Autonomous Movement and Self-Assembly', Angewandte Chemie-International Edition, 41 (2002), 652-+. [9] W. F. Paxton, A. Sen, and T. E. Mallouk, 'Motility of Catalytic Nanoparticles through Self-Generated Forces', Chemistry, 11 (2005), 6462-70. [10] Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R. Kline, A. Sen, and T. E. Mallouk, 'Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions', Langmuir, 22 (2006), 10451-56. [11] R. Golestanian, T. B. Liverpool, and A. Ajdari, 'Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products', Physical Review Letters, 94 (2005). [12] Jonathan Howse, Richard Jones, Anthony Ryan, Tim Gough, Reza Vafabakhsh, and Ramin Golestanian, 'Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk', Physical Review Letters, 99 (2007). [13] N. Mano, and A. Heller, 'Bioelectrochemical Propulsion', Journal of the American Chemical Society, 127 (2005), 11574-75. [14] D. Pantarotto, W. R. Browne, and B. L. Feringa, 'Autonomous Propulsion of Carbon Nanotubes Powered by a Multienzyme Ensemble', Chemical Communications (2008), 1533-35. [15] D. A. Wilson, R. J. M. Nolte, and J. C. M. van Hest, 'Autonomous Movement of Platinum-Loaded Stomatocytes', Nature Chemistry, 4 (2012), 268-74. [16] G. Huang, and Y. Mei ,'Thinning and Shaping Solid Films into Functional and Integrative Nanomembranes', Adv Mater, 24 (2012), 2517-46. [17] Yongfeng Mei, Gaoshan Huang, Alexander A. Solovev, Esteban Bermudez Urena, Ingolf Monch, Fei Ding, Thomas Reindl, Ricky K. Y. Fu, Paul K. Chu, and Oliver G. Schmidt, 'Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers', Advanced Materials, 20 (2008), 4085-90. [18] G. Huang, Y. Mei, D. J. Thurmer, E. Coric, and O. G. Schmidt,'Rolled-up Transparent Microtubes as Two-Dimensionally Confined Culture Scaffolds of Individual Yeast Cells', Lab Chip, 9 (2009), 263-8. [19] J. X. Li, G. S. Huang, M. M. Ye, M. L. Li, R. Liu, and Y. F. Mei, 'Dynamics of Catalytic Tubular Microjet Engines: Dependence on Geometry and Chemical Environment', Nanoscale, 3 (2011), 5083-89. [20] A. A. Solovev, S. Sanchez, Y. Mei, and O. G. Schmidt, 'Tunable Catalytic Tubular Micro-Pumps Operating at Low Concentrations of Hydrogen Peroxide', Phys Chem Chem Phys, 13 (2011), 10131-5. [21] Alexander A. Solovev, Samuel Sanchez, Martin Pumera, Yong Feng Mei, and Oliver G. Schmidt, 'Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro-Objects' Advanced Functional Materials, 20 (2010), 2430-35. [22] M. Favelukis, and R.J. Albalak, 'Bubble Growth in Viscous Newtonian and Non-Newtonian Liquids', The Chemical Engineering Journal and the Biochemical Engineering Journal, 63 (1996), 149-55. [23] D. Lastochkin, and M. Favelukis, 'Bubble Growth in a Variable Diffusion Coefficient Liquid', Chemical Engineering Journal, 69 (1998), 21-25. [24] M. Favelukis, and G. S. Yablonsky, 'Catalytic Bubble Model: Bubble Growth with an Interfacial Chemical Reaction', Industrial & Engineering Chemistry Research, 43 (2004), 4476-82. [25] Van P. Carey, Liquid–Vapor Phase-Change Phenomena, Hemisphere, New York, 1992. [26] B. R. Fu, and Chin Pan, 'Bubble Growth with Chemical Reactions in Microchannels', International Journal of Heat and Mass Transfer, 52 (2009), 767-76. [27] Soon-lin Chen, Chun-ting Lin, Chin Pan, 'Growth and Detachment of Chemical Reaction-Generated Micro-Bubbles on Micro-Textured Catalyst', Microfluidics and Nanofluidics, 7 (2009), 807-18. [28] I. Langmuir, 'The Constitution and Fundamental Properties of Solids and Liquids Part I Solids', Journal of the American Chemical Society, 38 (1916), 2221-95. [29] K.J. Bathe, Finite Element Procedures, Prentice Hall, Englewood Cliffs, NJ, (1996). [30] K.J. Bathe, and H. Zhang, 'A Flow-Condition-Based Interpolation Finite Element Procedure for Incompressible Fluid Flows', Computers & structures, 80 (2002), 1267-77. [31] K.J. Bathe, H. Zhang, and S. Ji, 'Finite Element Analysis of Fluid Flows Fully Coupled with Structural Interactions', Computers & Structures, 72 (1999), 1-16. [32] K.J. Bathe, H. Zhang, and X. Zhang, 'Some Advances in the Analysis of Fluid Flows', Computers & structures, 64 (1997), 909-30. [33] K.J. Bathe, H. Zhang, and M.H. Wang, 'Finite Element Analysis of Incompressible and Compressible Fluid Flows with Free Surfaces and Structural Interactions', Computers & Structures, 56 (1995), 193-213. [34] K.J. Bathe, J. Walczak, and H. Zhang, 'Some Recent Advances for Practical Finite Element Analysis', Computers & structures, 47 (1993), 511-21. [35] 崴昊科技—ADINA結構彈線性及流固偶和分析教材。 [36] Geraldine Duhar, and Catherine Colin, 'Dynamics of Bubble Growth and Detachment in a Viscous Shear Flow', Physics of Fluids, 18 (2006), 077101. [37] A. Lopez-Villa, A. Medina, and F. J. Higuera, 'Bubble Growth by Injection of Gas into Viscous Liquids in Cylindrical and Conical Tubes', Physics of Fluids, 23 (2011), 102102. [38] Elin Olsson, and Gunilla Kreiss, 'A Conservative Level Set Method for Two Phase Flow', Journal of Computational Physics, 210 (2005), 225-46. [39] Elin Olsson, Gunilla Kreiss, and Sara Zahedi, 'A Conservative Level Set Method for Two Phase Flow Ii', Journal of Computational Physics, 225 (2007), 785-807. [40] M. Sussman, P. Smereka, and S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow (Department of Mathematics, University of California, Los Angeles, 1994). [41] J.A. Sethian, and P. Smereka, 'Level Set Methods for Fluid Interfaces', Annual Review of Fluid Mechanics, 35 (2003), 341. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63364 | - |
dc.description.abstract | 近年來,由活細胞的生物引擎取得靈感,科學家開始研究如何透過化學反應為奈米、微米尺寸大小的引擎提供推進動力,由於其具有微小性,以及能自發性推動的性質,在很多領域都有潛在的運用。使得奈米引擎的理論研究及製程日漸受到重視。
本研究建立以氣泡推進法為推進機制的引擎模型,其根據過氧化氫的催化反應,氣泡脫離反應面所產生的動量變化,來解釋微米引擎的推動力學。我們考慮了整個系統的動量變化,求解出引擎的終端速度,及達到終端速度的時間,並結合了氣泡生成模組,以及蘭米爾方程式,使得數學模型與實驗可以更一致性。同時我們也建立了兩個數值模擬:引擎運動模擬、氣泡生成模擬,由模擬中驗證了數學模型上參數使用的合理性。 我們建立的引擎模型可以預測其引擎速度與氣泡的半徑平方成正比,與引擎的幾何尺寸和環境溶液濃度也有影響。並將模型預測結果與實驗結果做比較,有非常好的吻合。 | zh_TW |
dc.description.abstract | In recent years, inspired by natural nanomotors, scientists have begun to study how to use the chemical reaction to provide propulsion power on the artificial nanomotors. Due to its minute and self-propelled properties. It has a lot of potential applications in many fields.
The thesis presents a bubble propulsion model, which is based on catalyzed hydrogen peroxide decomposition reaction and momentum change when bubbles detach from the reaction surface to explain the micromotor propulsion mechanism. We consider the total system momentum change and solve the micromotor terminal velocity, reached terminal velocity time. It combines the bubble growth model and Langmuir equation, which make our model more consistent with experimental conditions. We have also established two numerical simulations:Jet Engines model and Bubble growth model. The simulation results verify the parameters used in the mathematical model. The mathematical model can predict the velocity of micromotor which is directly proportional to the square of bubble radius. The geometric dimensions of the micromotor, like length and radius, also influence its dynamic behavior. The model predictions are supported by the experiment data of the roll-up micromotor . | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:37:13Z (GMT). No. of bitstreams: 1 ntu-101-R99543063-1.pdf: 3457848 bytes, checksum: fdd33936f2ecd78f74d705a3a305d7d9 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 # 致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 符號表 xi 第一章 緒論 1 1.1 研究動機 1 1.2 奈米引擎介紹 2 1.2.1 自然界的奈米引擎(Natural Nanomotors) 2 1.2.2 人造起催化反應的奈米引擎(Artificial catalytic nanomotors) 4 1.3 文獻回顧 5 1.3.1 界面張力(Interfacial tension) 6 1.3.2 自電泳(Self electrophoresis) 8 1.3.3 擴散泳(Diffusiophoresis) 9 1.3.4 氣泡推進(Bubble propulsion) 10 1.4 論文架構 13 第二章 實驗介紹 14 2.1 引擎製作 15 2.2 實驗 16 2.2.1 幾何尺寸與環境濃度對引擎速度的影響 17 第三章 奈米引擎模型 22 3.1 模組介紹 22 3.2 奈米引擎推導 24 3.3 氣泡生成模組 29 3.4 定值氣體產生率 32 3.5 討論 34 3.5.1 產生的氣泡大小對引擎速度的影響 34 3.5.2 改變引擎半徑對引擎速度的影響 35 3.5.3 改變引擎長度對引擎速度的影響 36 3.5.4 改變溶液溶度對引擎速度的影響 37 3.5.5 結果討論 38 第四章 數值模擬 39 引擎運動的數值模擬 40 4.1 ADINA 程式介紹 40 4.2 數學模型 41 4.2.1 統御方程式 41 4.2.2 流固耦合理論 42 4.2.3 流體與固體的模型的網格 43 4.2.4 流體結構與固體結構模型中的時間積分。 45 4.3 模型建立 46 4.4 模擬結果與分析 50 4.4.1 改變寬度對終端速度的影響 56 4.4.2 改變長度對終端速度的影響 57 4.4.3 改變外加施力對終端速度的影響 58 4.4.4 不同形狀的終端速度討論 59 氣泡生成的數值模擬 61 4.5 氣泡的生成模型理論 61 4.6 數學模型 62 4.6.1 等位函數法(Level set method) 62 4.6.2 氣液兩相流方程式 63 4.7 數值模型的設定與建立 66 4.8 模擬結果與討論 67 4.8.1氣泡模型討論 72 第五章 結論與未來展望 73 5.1 總結 73 5.2 未來展望 74 參考文獻 75 | |
dc.language.iso | zh-TW | |
dc.title | 使用氣泡推進法建構奈米引擎模型 | zh_TW |
dc.title | Catalytic Nanomotors Model by Bubble Propulsion | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊照彥(Jaw-Yen Yang),陳國慶(Kuo-Ching Chen),潘國隆(Kuo-Long Pan),江宏仁(Hong-Ren Jiang) | |
dc.subject.keyword | 奈米引擎,微米引擎,氣泡生成,固液耦合,有限元素法, | zh_TW |
dc.subject.keyword | Nanomotor,Micromotor,Bubble growth,Solid-liquid coupling,Finite element method, | en |
dc.relation.page | 78 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-10-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。