Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63354
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高振宏(C. R. Kao)
dc.contributor.authorWei-Ming Chenen
dc.contributor.author陳偉銘zh_TW
dc.date.accessioned2021-06-16T16:36:38Z-
dc.date.available2012-11-22
dc.date.copyright2012-11-22
dc.date.issued2012
dc.date.submitted2012-10-17
dc.identifier.citationChapter 1:
[1]LumiGreen Technology Company website. http://www.lumigtech.com/
[2]E. B. Smith III: Health and environmental effects of lead and other commonly used elements in microelectronics. Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, K.J. Puttlitz and K.A. Stalter (New York: Marcel Dekker, Inc., 2004), p. 49.
[3]P. Cusack, and T. Perr, Plastics, Additives and Compounding, 8 (2006), p. 46.
[4]K. J. Puttlitz: Overview of lead-free solder issues including selection. Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, K.J. Puttlitz and K.A. Stalter (New York: Marcel Dekker, Inc., 2004), p. 1
[5]SolidState Technology website. http://www.electroiq.com/
[6]IMEC Company website. http://www.imec.be/
[7]P. A. Gruber, L. Belanger, G. P. Brouillette, D. H. Danovitch, J. L. Landrevile, D. T. Naugle, V. A. Oberson, D. Y. Shin, C. L. Tessler and M. R. Turgeon, “Low-cost wafer bumping,” IBM J. Res. & Dev., 49 (2005), 4/5, p. 621.
[8]C. A. Harper “Electronic Packaging and Interconnection Handbook, 3rd Edition,” Mc-Graw Hill (New York, 2000), p. 6.6.
[9]K. O’Donnell, Advanced Packaging, 13 (2004), p. 21.
[10]W. G. Bader, Weld. Res. Suppl., (1969), p. 551.
[11]C. E. Ho, Y. L. Lin, and C. R. Kao, Chem. Mater., 14 (2002), p. 949.
[12]C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, J. Electron. Mater., 31 (2002), p. 584.
[13]W. T. Chen, C. E. Ho, and C. R. Kao, J. Mater. Res., 17 (2002), p. 263.
[14]S. K. Kang, W. K. Choi, D. Y. Shin, D. W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, and K. J. Puttlitz, JOM, 55 (2003), p. 61.
[15]K. S. Kim, S. H. Huh, and K. Suganuma, J. Alloys Compd., 352 (2003), p. 226.
[16]L. P. Lehman, S. N. Athavale, T. Z. Fullem, A. C. Giamis, R. K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J. Wang, Y. Xing, L. Zavalij, P. Borgesn, and E. J. Cotts, J. Electron. Mater., 33 (2004), p. 1429.
[17]C. H. Lin, S. W. Chen, and C. H. Wang, J. Electron. Mater., 31 (2002), p. 907.
[18]K. Zeng and K. N. Tu, Mater. Sci. Eng., R 38 (2002), p. 55.
[19]C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, J. Electron. Mater., 31 (2002), p. 584.
Chapter 2:
[1]C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang, J. Electron. Mater., 35 (2006), p. 1017.
[2]C. H. Lin, S. W. Chen, and C. H. Wang, J. Electron. Mater., 31 (2002), p. 907.
[3]C. Y. Li and J. G. Duh, J. Mater. Res., 20 (2005), p. 3118.
[4]C. E. Ho, S. C. Yang, and C. R. Kao, J. Mater. Sci.: Mater. Electron., 18 (2007), p. 155.
[5]L. C. Shiau, C. E. Ho, and C. R. Kao, Sold. Surf. Mount Technol., 14 (2002), p. 25.
[6]S. C. Yang, C. E. Ho, C. W. Chang, and C. R. Kao, J. Mater. Res., 21 (2006), p. 2436.
[7]S. C. Yang, Y. W. Wang, C. C. Chang, and C. R. Kao, J. Electron. Mater., 37 (2008), p. 1591.
[8]J. W. Jang, L. N. Ramanathan, J. K. Lin, and D. R. Frear, J. Appl. Phys., 95 (2004), p. 8286.
[9]M. H. Tsai, Y. W. Lin, and C. R. Kao, J. Mater. Res., 24 (2009), p. 3407.
[10]K. Z. Wang and C. M. Chen, J. Electron. Mater., 34 (2005), p. 1543.
[11]S. C. Yang, C. E. Ho, C. W. Chang, and C. R. Kao, J. Appl. Phys., 101 (2007), p. 084911.
[12]T. Laurila, V. Vuorinen, and J. K. Kivilahti, Mater. Sci. Eng., R49 (2005), p. 1.
[13]C. E. Ho, Y. L. Lin, and C. R. Kao, Chem. Mater., 14 (2002), p. 949.
[14]C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, J. Electron. Mater., 31 (2002), p. 584.
[15]W. T. Chen, C. E. Ho, and C. R. Kao, J. Mater. Res., 17 (2002), p. 263.
[16]K. Nogita and T. Nishimura, Scripta Mater., 59 (2008), p. 191.
Chapter 3:
[1]J. O. Suh, K. N. Tu, and N. Tamura, Appl. Phys. Lett., 91 (2007), p. 051907.
[2]J. O. Suh, K. N. Tu, and N. Tamura, J. Appl. Phys., 102 (2007), p. 063511.
[3]H. F. Zou, H. J. Yang, and Z. F. Zhang, Acta Mater., 56 (2008), p. 2649.
[4]H. Tsukamoto, T. Nishimura, and K. Nogita, Materials Lett., 63 (2009), p. 2687.
[5]C. E. Ho, Y. L. Lin, and C. R. Kao, Chem. Mater., 14 (2002), p. 949.
[6]C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, J. Electron. Mater., 31 (2002), p. 584.
[7]W. T. Chen, C. E. Ho, and C. R. Kao, J. Mater. Res., 17 (2002), p. 263.
[8]T. Laurila, V. Vuorinen, and J. K. Kivilahti, Mater. Sci. Eng., 49 (2005), p. 1.
[9]C. E. Ho, Y. W. Lin, S. C. Yang, and C. R. Kao, D. S. Jiang, J. Electron. Mater., 35 (2006), p. 1017.
[10]C. E. Ho, S. C. Yang, and C. R. Kao, J. Mater. Sci-Mater., El. 18 (2007), p. 155.
[11]K. Nogita and T. Nishimura, Scripta Mater., 59 (2008), p. 191.
[12]K. Nogita, Intermetallics, 18 (2010), p. 145.
[13]K. Nogita, C. M. Gourlay, and T. Nishimura, JOM, 61-6 (2009), p. 45.
[14]W. B. Pearson and L. T. Thomson, Can. J. Phys., 35(4) (1957), p. 349.
[15]A. K. Larsson, L. Stenberg and S. Lidin, Acta Crys., B50 (1994), p. 636.
[16]A. K. Larsson, L. Stenberg, and S. Lidin, Z. Kristallogr., 210 (1995), p. 832.
[17]K. Nogita, S. Suenaga, S. D. McDonald, H. Tsukamoto, J. Read and T. Nishimura, Proc. Int. Conf. Electronics Packaging, (2009), K14-2-2.
[18]L. Jiang and N. Chawla, Scripta Mater., 63 (2010), p. 480.
[19]L. Jiang, H. Jiang, and N. Chawla, J. Electron. Mater., 41 (2012), p. 2083.
[20]P. J. Jones and J. W. Edington, Philos. Mag., 27:2 (1973), p. 393.
[21]J. Y. Kim, Y. C. Sohn, and J. Yu, J. Mater. Res., 22 (2007), p. 913.
[22]J. Yu and J. Y. Kim, Acta Mater., 56 (2008), p. 5514.
[23]H. Y. Hsiao, C. M. Liu, H. W. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, C. Chen, and K. N. Tu, Science, 336 (2012), p. 1007.
Chapter 4:
[1]S. K. Kang and A. K. Sarkhel, J. Electron. Mater., 23 (1994), p. 701.
[2]S. K. Kang, W. K. Choi, D. Y. Shih, D. W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, and K. J. Puttlitz, IEEE Electron. Compon. Technol. Conf., 53 (2003), p. 64.
[3]M. Lu, D. Y. Shih, P. Lauro, C. Goldsmith, and D. W. Henderson, Appl. Phys. Lett., 92 (2008), 211909.
[4]S. K. Seo, S. K. Kang, D. Y. Shih, and H. M. Lee, Microelectron. Reliab., 49 (2009), p. 288.
[5]S. K. Seo, S. K. Kang, D. Y. Shih, and H. M. Lee, J. Electron. Mater., 38 (2009), p. 257.
[6]S. K. Seo, S. K. Kang, M. G. Cho, and H. M. Lee, JOM, 62 (2010), p. 22.
[7]I. E. Anderson, J. C. Foley, B. A. Cook, J. Harringa, R.L. Terpstra, and O. Unal, J. Electron. Mater., 30 (2001), p. 1050.
[8]M. G. Cho, S. K. Kang, D. Y. Shih, and H. M. Lee, J. Electron. Mater., 36 (2007), p. 1501.
[9]Y. W. Wang, Y. W. Lin, C. T. Tu, and C. R. Kao, J. Alloys Compd., 478 (2009), p. 121.
[10]S. C. Yang, C. C. Chang, M. H. Tsai, and C. R. Kao, J. Alloys Compd., 499 (2010), p. 149.
[11]Y. W. Wang, C. C. Chang, and C. R. Kao, J. Alloys Compd., 478 (2009) p. L1.
[12]Y. W. Wang, Y. W. Lin, and C. R. Kao, J. Alloys Compd., 493 (2010) p. 233.
[13]Y. W. Wang, C. C. Chang, W. M. Chen, and C. R. Kao, J. Electron. Mater., 39 (2010), p. 2636.
[14]Y. W. Wang, Y. W. Lin, and C. R. Kao, Microelectron. Reliab., 49 (2009), p. 248.
[15]S. C. Yang, Y. W. Wang, C. C. Chang, and C. R. Kao, J. Electron. Mater., 37 (2008), p. 1591.
[16]S. C. Yang, C. E. Ho, C. W. Chang, and C. R. Kao, J. Mater. Res., 21 (2006), p. 2436.
[17]W. Liu, P. Bachorik, and N. C. Lee, IEEE Electron. Compon. Technol. Conf., 58 (2008), p. 452.
[18]V. Vuorinen, H. Q. Dong and T. Laurila, J. Mater. Sci., 22 (2011), on line.
[19]P.A. Gruber, D. Shih, L. Belanger, G. Brouillette, D. Danovitch, V. Oberson, M. Turgeon, and H. Kimura, IEEE Electron. Compon. Technol. Conf., 54 (2004), p. 650.
[20]M. G. Cho, H. Y. Kim, S. K. Seo, and H. M. Lee, Appl. Phys. Lett., 95 (2009), 021905.
[21]J. Wang, C. Liu, C. Leinenbach, U. E. Klotz, P. J. Uggowitzer, and J. F. Loffler, Calphad: Comput. Coupling Phase Diagrams Thermochem., 35 (2010), p. 82.
[22]X. Zhang, Y. Zhan, Q. Guo, G. Zhang, and J. Hu, J. Alloys Compd., 480 (2009), p. 382.
[23]H. Kleinke, M. Waldeck and P. Gutlich, Chem. Mater., 12 (2000), p. 2219.
[24]B. B. Alchagirov and A. M. Chochaeva, High Temp., 38 (2000), p. 44.
[25]E. O. Hall, Proc. Phys. Soc. London, B64 (1951), p. 747.
[26]N. J. Petch, J. Iron and Steel Inst., 174 (1953), p.25.
[27]C. Coston and N. H. Nachtrieb, J. Phys. Chem., 68 (1964), p. 2219.
[28]A. K. Larsson, L. Stenberg, and S. Lidin, Z. Kristallogr., 210 (1995), p. 832.
[29]K. Nogita and T. Nishimura, Scripta Mater., 59-2 (2008), p.191.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63354-
dc.description.abstract綜觀現今國際電子構裝領域,三維立體構裝之趨勢儼然已成為微電子產業發展之目標。而在眾多三維立體構裝的技術中,又以使用微米級銲點的晶片接合法最廣為人所使用。然而由於微米級銲點內部的介金屬化合物所佔之比例往往隨著元件操作溫度或時間增加而巨幅提升甚至完全佔滿,因此銲點的特性將不再受銲料所主導乃改由介金屬化合物所決定。故系統性地研究銲接反應內部介金屬化合物之相關性質便成為刻不容緩的議題。本論文即針對常用的Sn-Cu銲料及Ni表面處理層之銲接反應及其介金屬化合物(Cu,Ni)6Sn5進行基礎研究型的漸進式探討。探討的目標由被動避險至主動改質可分為三大階段:一、探求避免界面介金屬化合物剝離發生之方法。二、控制界面介金屬化合物之生長形貌。三、積極調整銲料成分以求銲料穩定化並改質介金屬化合物之成長速率。有鑑於此,本論文具體提出三大相對應之代表性議題:一、探討困擾產業界已久的界面(Cu,Ni)6Sn5之大規模剝離現象(Massive Spalling)之發生機制及實際應用的避免方法。二、研究Sn-Cu/Ni界面反應中所生成的(Cu,Ni)6Sn5與其Ni基材之方向性關係,並提出可供預測該系統中介金屬化合物生長方向之判斷準則。三、微量添加過渡金屬元素Ti於銲料中,以期對於介金屬化合物、銲接界面反應及銲料本質特徵進行改質。研究結果指出:一、界面(Cu,Ni)6Sn5的大規模剝離現象主要是受到熱力學上的平衡相轉變過程所驅動。二、界面(Cu,Ni)6Sn5與Ni基材存在一明確之從優取向生長關係,此關係可決定銲接反應中界面(Cu,Ni)6Sn5的生成方向,並可有效預測其反應後之生長織構(Texture)。三、微添加Ti元素於銲料中,可大幅降低其凝結過程之過冷度(Undercooling),並在長時間熱處理過程中可穩定銲料內部之Sn晶粒組織;而微添加Ti元素對於不同的界面介金屬化合物之成長亦存在不同的影響。本論文對於所研究之議題,除了實驗佐證與結果探討外,亦將力求建立學理量化準則以供參酌引用。zh_TW
dc.description.abstractIn the field of modern electronic packaging, the three-dimensional integrated circuit (3D IC) packaging has become essential for the microelectronics industry. Under the continuing development of 3D IC packaging, solder micro bumping is regarded as the most accepted solution for executing the chip-to-chip bonding technology. Nevertheless, in solder micro bumping, the volume ratio of intermetallic compound(s) to solder could be very high. In fact, in many scenarios, solder is completely consumed and the joints are entirely made up of intermetallics immediately after assembly. Under such a condition, the mechanical properties of a solder joint will be no longer dominated by the properties of solder, but by those of the intermetallics. This dissertation therefore investigates the very common scenario between Sn-Cu solder and Ni substrate from three objectives regarding intermetallics: (1) to avoid the spalling of interfacial intermetallics, (2) to control the growth morphology of intermetallics, and (3) to modify solder composition and formation of intermetallics. Three corresponding issues are specifically proposed, among them are (1) uncovering the driving force for massive spalling phenomenon in Sn-Cu/Ni system, (2) studying the orientation relationship between intermetallics and substrate in Sn-Cu/Ni soldering reaction, and (3) investigating the effects of minor Ti addition on selected soldering systems and intermetallics. The results unequivocally show that (1) the massive spalling phenomenon of interfacial (Cu,Ni)6Sn5 was mainly driven by a shifting of the equilibrium phase in thermodynamics, (2) a pronounced preferred orientation relationship between (Cu,Ni)6Sn5 and Ni was identified, and it could be used to predict the growth texture of (Cu,Ni)6Sn5 in the future, and (3) Ti addition could effectively reduce the undercooling as well as have the microstructure of Sn stabilized against extreme aging conditions; Ti addition was found to influence the formations of different intermetallics as well. In addition to experimental evidence and data analysis, this dissertation also strives for quantitatively proposing theoretical regulations for reference.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:36:38Z (GMT). No. of bitstreams: 1
ntu-101-F97527034-1.pdf: 9189479 bytes, checksum: c2b5b9f12f25e82e37effb098fd24550 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsCONTENTS
Contents I
List of Figures III
List of Tables IX
I. BACKGROUNDS AND OBJECTIVES
1.1 Global Development of Pb-free Electronics 1
1.2 Pb-free Solder 2
1.2.1 Thrust of Pb-free Solder 2
1.2.2 Pb-free Solder Candidates 5
1.2.3 Pb-free Solder in Three-dimensional Integrated Circuit Package 6
1.3 Under Bump Metallurgy (UBM) or Surface Finishes 9
1.4 Interfacial Reaction between Sn-Ag-Cu base Solder and Ni UBM 12
1.5 Objectives 16
1.6 References 18
II. UNCOVERING THE DRIVING FORCE FOR MASSIVE SPALLING PHE- NOMENON IN SN-CU/NI SYSTEM
2.1 Introduction 20
2.2 Experimental Procedures 22
2.3 Results and Discussion 26
2.4 Conclusions 42
2.5 References 44
III. STUDYING THE ORIENTATION RELATIONSHIP BETWEEN INTER- METALLIC COMPOUNDS AND SUBSTRATE IN SN-CU/NI SOLDER- ING REACTION
3.1 Introduction 46
3.2 Experimental Procedures 48
3.3 Results and Discussion 50
3.3.1 Orientation relationships between (Cu,Ni)6Sn5 and Ni 50
3.3.2 Prediction of Texture Growth 61
3.3.3 Theoretical Analysis on Mechanical Properties of Textures 66
3.4 Conclusions 81
3.5 References 83
IV. INVESTIGATING THE EFFECTS OF MINOR TI ADDITION ON SELEC- TED SOLDERING SYSTEMS AND INTERMETALLIC COMPOUNDS
4.1 Introduction 85
4.2 Experimental Procedures 88
4.3 Results and Discussion 91
4.3.1 Melting, Solidification and Undercooling of Ti-alloyed Solder 91
4.3.2 Effect of Cooling Rate on Microstructure and Mechanical Properties 95
4.3.3 High Temperature Aging Characteristics 102
4.3.4 Interfacial Intermetallics between Ti-alloyed Solder and UBM 107
4.3.5 Sample Preparation for Electro-migration (EM) Tests 115
4.4 Conclusions 117
4.5 References 119
V. SUMMARY 121
dc.language.isozh-TW
dc.subject從優取向性生長zh_TW
dc.subject銲接反應zh_TW
dc.subject介金屬化合物zh_TW
dc.subject大規模剝離zh_TW
dc.subject微添加元素zh_TW
dc.subjectMinor Alloying Elementsen
dc.subjectIntermetallicsen
dc.subjectMassive Spallingen
dc.subjectPreferred Orientation Growthen
dc.subjectSoldering Reactionen
dc.title錫銅銲料與鎳基材之銲接反應研究:介金屬化合物的剝離防治、織構控制以及成長改質zh_TW
dc.titleStudy on Soldering Reaction between Sn-Cu Solder and Ni UBMs: Prevention of Spalling, Control of Texture, and Modification of Growth of Intermetallicsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee史達元(D. Y. Shih),林光隆(K. L. Lin),陳信文(C. –W. Chen),陳志銘(C. M. Chen),張道智(T. C. Chang)
dc.subject.keyword銲接反應,介金屬化合物,大規模剝離,從優取向性生長,微添加元素,zh_TW
dc.subject.keywordSoldering Reaction,Intermetallics,Massive Spalling,Preferred Orientation Growth,Minor Alloying Elements,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2012-10-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
8.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved