請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63348完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫啟光(Chi-Kuang Sun) | |
| dc.contributor.author | I-Ju Chen | en |
| dc.contributor.author | 陳怡如 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:36:18Z | - |
| dc.date.available | 2012-11-22 | |
| dc.date.copyright | 2012-11-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-10-19 | |
| dc.identifier.citation | [1] (2012, 26 Jul). The 2010 Nobel Prize in Physics - Press Release'.
Nobelprize.org. . Available: http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html [2] F. Schwierz, 'Graphene transistors,' Nature Nanotechnology, vol. 5, pp. 487-496, 2010. [3] T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, 'Extremely efficient flexible organic light-emitting diodes with modified graphene anode,' Nature Photonics, vol. 6, pp. 105-110, 2012. [4] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, 'Tunable infrared plasmonic devices using graphene/insulator stacks,' Nature Nanotechnology, vol. 7, pp. 330-334, 2012. [5] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, 'Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,' Science, vol. 324, pp. 1312-1314, 2009. [6] M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, 'Ultrafast nonequilibrium carrier dynamics in a single graphene layer,' Physical Review B, vol. 83, p. 153410, 2011. [7] J. G. Pedersen and T. G. Pedersen, 'Dirac model of an isolated graphene antidot in a magnetic field,' Physical Review B, vol. 85, p. 035413, 2012. [8] S. Butscher, F. Milde, M. Hirtschulz, E. Malic, and A. Knorr, 'Hot electron relaxation and phonon dynamics in graphene,' Applied Physics Letters, vol. 91, pp. 203103-3, 2007. [9] N. Bonini, M. Lazzeri, N. Marzari, and F. Mauri, 'Phonon Anharmonicities in Graphite and Graphene,' Physical Review Letters, vol. 99, p. 176802, 2007. [10] M. Pozzo, D. Alfè, P. Lacovig, P. Hofmann, S. Lizzit, and A. Baraldi, 'Thermal Expansion of Supported and Freestanding Graphene: Lattice Constant versus Interatomic Distance,' Physical Review Letters, vol. 106, p. 135501, 2011. [11] C.-K. Sun, J.-C. Liang, and X.-Y. Yu, 'Coherent Acoustic Phonon Oscillations in Semiconductor Multiple Quantum Wells with Piezoelectric Fields,' Physical Review Letters, vol. 84, pp. 179-182, 2000. [12] P. A. Mante, A. Devos, and A. Le Louarn, 'Generation of terahertz acoustic waves in semiconductor quantum dots using femtosecond laser pulses,' Physical Review B, vol. 81, p. 113305, 2010. [13] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, 'Surface generation and detection of phonons by picosecond light pulses,' Physical Review B, vol. 34, pp. 79 4129-4138, 1986. [14] S. Wu, P. Geiser, J. Jun, J. Karpinski, and R. Sobolewski, 'Femtosecond optical generation and detection of coherent acoustic phonons in GaN single crystals,' Physical Review B, vol. 76, p. 085210, 2007. [15] Y.-E. Su, Y.-C. Wen, H.-M. Lee, S. Gwo, and C.-K. Sun, 'Observation of sub-100 femtosecond electron cooling time in InN,' Applied Physics Letters, vol. 96, pp. 052108-3, 2010. [16] C. K. Sun, F. Vallee, S. Keller, J. E. Bowers, and S. P. DenBaars, 'Femtosecond studies of carrier dynamics in InGaN,' Applied Physics Letters, vol. 70, pp. 2004-2006, 1997. [17] M. Breusing, C. Ropers, and T. Elsaesser, 'Ultrafast Carrier Dynamics in Graphite,' Physical Review Letters, vol. 102, p. 086809, 2009. [18] A. S. a. W. Beyer, Thin-Film Silicon Solar Cells: EFPL Press, 2010. [19] G.-W. Chern, K.-H. Lin, and C.-K. Sun, 'Transmission of light through quantum heterostructures modulated by coherent acoustic phonons,' Journal of Applied Physics, vol. 95, pp. 1114-1121, 2004. [20] Y.-E. Su, Y.-C. Wen, Y.-L. Hong, H.-M. Lee, S. Gwo, Y.-T. Lin, L.-W. Tu, H.-L. Liu, and C.-K. Sun, 'Using hole screening effect on hole--phonon interaction to estimate hole density in Mg-doped InN,' Applied Physics Letters, vol. 98, pp. 252106-3, 2011. [21] A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, 'Renormalization of graphene bands by many-body interactions,' Solid State Communications, vol. 143, pp. 63-71, 2007. [22] J. Shang, Z. Luo, C. Cong, J. Lin, T. Yu, and G. G. Gurzadyan, 'Femtosecond UV-pump/visible-probe measurements of carrier dynamics in stacked graphene films,' Applied Physics Letters, vol. 97, pp. 163103-3, 2010. [23] O. B. Wright, 'Ultrafast nonequilibrium stress generation in gold and silver,' Physical Review B, vol. 49, pp. 9985-9988, 1994. [24] G. Tas and H. J. Maris, 'Electron diffusion in metals studied by picosecond ultrasonics,' Physical Review B, vol. 49, pp. 15046-15054, 1994. [25] Y.-C. Wen, S.-H. Guol, H.-P. Chen, J.-K. Sheu, and C.-K. Sun, 'Femtosecond ultrasonic spectroscopy using a piezoelectric nanolayer: Hypersound attenuation in vitreous silica films,' Applied Physics Letters, vol. 99, pp. 051913-3, 2011. [26] C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, 'Picosecond interferometric technique for study of phonons in the brillouin frequency range,' Optics Communications, vol. 60, pp. 55-58, 1986. [27] H. Jeong-Yuan, K. Chun-Chiang, C. Li-Chyong, and C. Kuei-Hsien, 'Correlating defect density with carrier mobility in large-scaled graphene films: 80 Raman spectral signatures for the estimation of defect density,' Nanotechnology, vol. 21, p. 465705, 2010. [28] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, 'Large-scale pattern growth of graphene films for stretchable transparent electrodes,' Nature, vol. 457, pp. 706-710, 2009. [29] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, 'Fine Structure Constant Defines Visual Transparency of Graphene,' Science, vol. 320, p. 1308, June 6, 2008 2008. [30] J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, 'Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible,' Applied Physics Letters, vol. 93, pp. 131905-3, 2008. [31] A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, 'Quasiparticle dynamics in graphene,' Nature Physics, vol. 3, pp. 36-40, 2007. [32] E. H. Hwang, B. Y.-K. Hu, and S. Das Sarma, 'Inelastic carrier lifetime in graphene,' Physical Review B, vol. 76, p. 115434, 2007. [33] T. Winzer, A. Knorr, and E. Malic, 'Carrier Multiplication in Graphene,' Nano Letters, vol. 10, pp. 4839-4843, 2010/12/08 2010. [34] H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, 'Ultrafast relaxation dynamics of hot optical phonons in graphene,' Applied Physics Letters, vol. 96, pp. 081917-3, 2010. [35] F. Rana, 'Electron-hole generation and recombination rates for Coulomb scattering in graphene,' Physical Review B, vol. 76, p. 155431, 2007. [36] S. Gilbertson, G. L. Dakovski, T. Durakiewicz, J.-X. Zhu, K. M. Dani, A. D. Mohite, A. Dattelbaum, and G. Rodriguez, 'Tracing Ultrafast Separation and Coalescence of Carrier Distributions in Graphene with Time-Resolved Photoemission,' The Journal of Physical Chemistry Letters, vol. 3, pp. 64-68, 2012/01/05 2011. [37] H. Yan, D. Song, K. F. Mak, I. Chatzakis, J. Maultzsch, and T. F. Heinz, 'Time-resolved Raman spectroscopy of optical phonons in graphite: Phonon anharmonic coupling and anomalous stiffening,' Physical Review B, vol. 80, p. 121403, 2009. [38] C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, 'Ultrafast Photoluminescence from Graphene,' Physical Review Letters, vol. 105, p. 127404, 2010. [39] P. Langot, N. Del Fatti, D. Christofilos, R. Tommasi, and F. Vallée, 'Femtosecond investigation of the hot-phonon effect in GaAs at room temperature,' Physical Review B, vol. 54, pp. 14487-14493, 1996. 81 [40] E. H. Hwang, B. Y.-K. Hu, and S. Das Sarma, 'Density Dependent Exchange Contribution to ∂μ/∂n and Compressibility in Graphene,' Physical Review Letters, vol. 99, p. 226801, 2007. [41] K. F. M. Leandro M. Malard, A. H. Castro Neto, N. M. R. Peres, Tony F. Heinz, 'Observation of Intra- and Inter-band Transitions in the Optical Response of Graphene,' arXiv:1104.3104v1 [cond-mat.mes-hall], 2011. [42] F. Rana, P. A. George, J. H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, and M. G. Spencer, 'Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,' Physical Review B, vol. 79, p. 115447, 2009. [43] F. Rana, J. H. Strait, H. Wang, and C. Manolatou, 'Ultrafast carrier recombination and generation rates for plasmon emission and absorption in graphene,' Physical Review B, vol. 84, p. 045437, 2011. [44] B. Gao, G. Hartland, T. Fang, M. Kelly, D. Jena, H. Xing, and L. Huang, 'Studies of Intrinsic Hot Phonon Dynamics in Suspended Graphene by Transient Absorption Microscopy,' Nano Letters, vol. 11, pp. 3184-3189, 2011/08/10 2011. [45] A. Elci, 'Electron-hole recombination via plasmon emission in narrow-gap semiconductors,' Physical Review B, vol. 16, pp. 5443-5451, 1977. [46] C.-T. Sah, Fundamentals of Solid-State Electronics: World Scientific Publishing Company, 1991. [47] A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, 'Band structure and many body effects in graphene,' The European Physical Journal - Special Topics, vol. 148, pp. 5-13, 2007. [48] K. Kang, D. Abdula, D. G. Cahill, and M. Shim, 'Lifetimes of optical phonons in graphene and graphite by time-resolved incoherent anti-Stokes Raman scattering,' Physical Review B, vol. 81, p. 165405, 2010. [49] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, 'Intrinsic and extrinsic performance limits of graphene devices on SiO2,' Nature Nanotechnology, vol. 3, pp. 206-209, 2008. [50] S. Fratini and F. Guinea, 'Substrate-limited electron dynamics in graphene,' Physical Review B, vol. 77, p. 195415, 2008. [51] S. Hidekatsu and A. Tsuneya, 'Electron lifetime due to optical-phonon scattering in a graphene sheet,' Journal of Physics: Conference Series, vol. 150, p. 022080, 2009. [52] J. Shang, T. Yu, J. Lin, and G. G. Gurzadyan, 'Ultrafast Electron−Optical Phonon Scattering and Quasiparticle Lifetime in CVD-Grown Graphene,' ACS Nano, vol. 5, pp. 3278-3283, 2011/04/26 2011. 82 [53] T. Saito, O. Matsuda, and O. B. Wright, 'Picosecond acoustic phonon pulse generation in nickel and chromium,' Physical Review B, vol. 69, p. 239902, 2004. [54] J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, 'Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,' ACS Nano, vol. 5, pp. 6916-6924, 2011/09/27 2011. [55] C.-Y. Chen, Y.-C. Wen, H.-P. Chen, T.-M. Liu, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, 'Narrow-band detection of propagating coherent acoustic phonons in piezoelectric InGaN/GaN multiple-quantum wells,' Applied Physics Letters, vol. 91, pp. 133101-3, 2007. [56] W. T. White, M. A. Henesian, and M. J. Weber, 'Photothermal-lensing measurements of two-photon absorption and two-photon-induced color centers in borosilicate glasses at 532 nm,' Jounal of the Optical Society of America B, vol. 2, pp. 1402-1408, 1985. [57] W. H. Rippard, A. C. Perrella, F. J. Albert, and R. A. Buhrman, 'Ultrathin Aluminum Oxide Tunnel Barriers,' Physical Review Letters, vol. 88, p. 046805, 2002. [58] V. Pishchik, L. A. Lytvynov, and E. R. Dobrovinskaya, Sapphire: Material, Manufacturing, Applications. NY, USA: Springer, 2009. [59] E. S. Zouboulis and M. Grimsditch, 'Refractive index and elastic properties of single-crystal corundum (alpha-Al2O3) up to 2100 K,' Journal of Applied Physics, vol. 70, pp. 772-776, 1991. [60] H. Y. Hao and H. J. Maris, 'Dispersion of the long-wavelength phonons in Ge, Si, GaAs, quartz, and sapphire,' Physical Review B, vol. 63, p. 224301, 2001. [61] J. M. Winey, Y. M. Gupta, and D. E. Hare, 'r-axis sound speed and elastic properties of sapphire single crystals,' Journal of Applied Physics, vol. 90, pp. 3109-3111, 2001. [62] C. Ltd. (2012, 09/09). Optical Glass (N-BK7 B270 and others) Data Sheet Available: http://www.crystran.co.uk/uploads/files/139.pdf [63] D. Heiman, D. S. Hamilton, and R. W. Hellwarth, 'Brillouin scattering measurements on optical glasses,' Physical Review B, vol. 19, pp. 6583-6592, 1979. [64] O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T. D. Moustakas, and M. Stutzmann, 'Sub-bandgap absorption of gallium nitride determined by Photothermal Deflection Spectroscopy,' Solid State Communications, vol. 97, pp. 365-370, 1996. [65] M. E. Lin, B. N. Sverdlov, S. Strite, H. Morkov, and A. E. Drakin, 'Refractive indices of wurtzite and zincblende GaN,' Electronics Letters, vol. 29, pp. 83 1759-1761, 1993. [66] N. D. M. Neil W. Ashcraft, Solid state physics: Harcourt College, 1976. [67] Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, 'Graphene Annealing: How Clean Can It Be?,' Nano Letters, vol. 12, pp. 414-419, 2012/01/11 2011. [68] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, 'The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2,' Applied Physics Letters, vol. 99, pp. 122108-3, 2011. [69] Y.-C. Lin, C. Jin, J.-C. Lee, S.-F. Jen, K. Suenaga, and P.-W. Chiu, 'Clean Transfer of Graphene for Isolation and Suspension,' ACS Nano, vol. 5, pp. 2362-2368, 2011/03/22 2011. [70] D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, 'Widely transparent electrodes based on ultrathin metals,' Optics Letters, vol. 34, pp. 325-327, 2009. [71] G. K. White, R. B. Roberts, and E. Fawcett, 'Thermal expansion of Cr and CrV alloys. I. Experiment,' Journal of Physics F: Metal Physics, vol. 16, p. 449, 1986. [72] S. L. R. Mikhail Efimovich Levinshteĭn, Michael Shur, Properties of Advanced SemiconductorMaterials GaN, AlN, InN, BN, SiC, SiGe New York: John Wiley & Sons, Inc., 2001. [73] N. Jung, A. C. Crowther, N. Kim, P. Kim, and L. Brus, 'Raman Enhancement on Graphene: Adsorbed and Intercalated Molecular Species,' ACS Nano, vol. 4, pp. 7005-7013, 2010/11/23 2010. [74] L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. Castro Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, 'Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers,' Nano Letters, vol. 12, pp. 1707-1710, 2012/03/14 2012. [75] K. W. Sun, H. Y. Chang, C. M. Wang, S. Y. Wang, and C. P. Lee, 'Hot-electron relaxation via optical phonon emissions in GaAs/Al x Ga 1- x As quantum well structures: dependence upon the alloy composition and barrier width,' Nanotechnology, vol. 11, p. 227, 2000. [76] O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, 'Acoustic phonon generation and detection in GaAs⁄Al_{0.3}Ga_{0.7}As quantum wells with picosecond laser pulses,' Physical Review B, vol. 71, p. 115330, 2005. [77] T.-M. Liu, S.-Z. Sun, C.-F. Chang, C.-C. Pan, G.-T. Chen, J.-I. Chyi, V. Gusev, 84 and C.-K. Sun, 'Anharmonic decay of subterahertz coherent acoustic phonons in GaN,' Applied Physics Letters, vol. 90, pp. 041902-3, 2007. [78] T.-M. Liu, S.-Z. Sun, C.-F. Chang, C.-C. Pan, G.-T. Chen, J.-I. Chyi, and C.-K. Sun, 'Roles of Dislocation Density to the Scattering of Nano-acoustic Waves in GaN,' Chinese Journal of Physics, vol. 49, pp. 171-175, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63348 | - |
| dc.description.abstract | 石墨烯(Graphene)是一種由碳原子組成呈六角形蜂巢結構的二維薄膜,其擁有許多
極佳的特性如透明、特高的熱傳導率及載子遷移率、極其強韌的機械特性等,因 此石墨烯在實際應用上有極高的價值,例如可成為下一世代超高頻場效電晶體的 導電通道和取代銦錫氧化物 (ITO)成為觸控面板、LCD 和太陽能電池中的透明導 電薄膜。然而在此篇論文中,我將探討石墨烯的另一項尚未被發掘潛力:基於石 墨烯的極薄特性,其厚度比任何實際用來當聲能轉換器(acoustic transducer)的金屬 薄膜都薄了十倍,而由金屬薄膜產生的同調聲子(coherent acoustic phonons)頻寬大 略與其厚度成反比,因此石墨烯有極大潛力擔任聲能轉換器來產生極寬頻的同調 聲子。使用石墨烯作為聲能轉換器將有一項無可取代的優勢,其易於製備及轉印 於任何基板的特性,使其有機會取代其他寬頻聲能轉換器,將奈米超音波顯微技 術應用到任何的材料上。 在上述的應用中,石墨烯載子受光、電激發後的動力及釋能機制顯得格外重 要,因此在本論文中,我們首先利用飛秒雷射激發探測(femtosecond pump probe) 技術來研究石墨烯載子的釋能動力學。透過此項技術及理論分析,受激載子透過 載子-載子、載子-聲子、聲子-聲子交互作用來釋能的特徵時間、發生順序等特性 都可被了解。此外,透過量測在本論文中使用的石墨烯樣本的載子釋能動力學, 並與其他研究團隊對原始石墨烯(無基板、無參雜等)的理論及實驗研究做比較,我 們使用的石墨烯樣本因基板的使用、製程等引起的差異可進一步被了解。 接著,我們同樣利用激發探測技術來研究透過飛秒雷射激發有基板支撐的單 層石墨烯是否可產生垂直表面傳遞的寬頻同調聲子。首先,藉著觀測反向布呂淵 振盪 (backward Brillouin oscillation),我們印證了透過雷射激發由玻璃、藍寶石、 銦化鎵基板支撐之單層石墨烯,可產生具有垂直表面動量的同調聲子。因此我們 證實了將石墨烯轉印至基板上便作為聲能轉換器。 為了能了解透過飛秒雷射激發產生的同調聲子的完整頻譜,我們利用具有壓 電性質的氮化銦鎵量子井(在氮化鎵基底中)作為基板。透過使用3nm 的量子井, 我們可獲得高達2THz 的偵測頻寬。實驗結果顯示透過飛秒雷射激發有基板支撐之 單層石墨烯產生的同調聲子脈衝擁有兩極的波形,且其頻率高達一兆赫(最高值在 約0.2 兆赫)。這一部分的實驗結果證明了,儘管石墨烯擁有二維性質,透過飛秒 雷射激發由基板支撐的單層石墨烯,兆赫頻寬的同調聲子可被產生且傳遞進入基 板內,因此利用石墨烯作為超寬頻聲能轉換器的可行性已被證實。進一步,為了 了解同調聲子的產生機制,基於我們對於石墨烯載子釋能動力學的研究,我們提 出了一個假說,此假說可成功的解釋實驗中量測到的同調聲子頻譜及脈衝波形。 | zh_TW |
| dc.description.abstract | Graphene is a two-dimensional honeycomb lattice of carbon atoms. Due to its superior
qualities, for example, it’s transparent, its thermal conductivity outperforms any other materials, its charge-carrier mobility is extremely high, and it is mechanically extremely strong, it has tremendous potential for future applications. For example, it’s a promising candidate for the conducting channel of future ultrafast field effect transistors and the replacement for the transparent electrode in touching screens, liquid crystal display (LCD), and solar cells. In this thesis, one of graphene’s undiscovered potential will be studied: graphene’s atomic thickness is one order thinner than any realistic metal films, which are usually used as the acoustic transducers in ultrafast acoustic devices and acoustic microscopy. Hence, graphene is a promising material to generate extremely broad band-width coherent acoustic phonons, because metal film transducers typically generate longitudinal coherent acoustic phonons with band-width inversely proportional to the film thickness. Moreover, unlike other broad band-width acoustic transducers, graphene is easily fabricated can be transferred onto all kinds of substrates. Thus, the usage of graphene can help applying acoustic microscopy to all kinds of materials. In the above applications, clear understanding about the carrier dynamics of supported monolayer graphene is critical. In this thesis, femtosecond infrared pump-probe spectroscopy together with theoretical analyses were used to study the ultrafast carrier dynamics of graphene. The characteristic times, sequences, and dominance of several hot carriers’ efficient relaxation channels, including carrier-carrier, carrier-phonon, and phonon-phonon interaction were studied. Moreover, by comparing the ultrafast carrier dynamics of our own graphene samples and pristine graphene, which was theoretically predicted or experimentally observed in previous literatures, we can have a clue of the differences between our own sample and pristine graphene due to fabrication methods and the usage of substrates. Then, pump-probe spectroscopy was also used to study whether coherent acoustic phonons that propagate into the substrate can be generated by photo-excitation of the supported monolayer graphene. First, through the observation of backward Brillouin oscillations with graphene deposited on glass, sapphire and GaN, it was verified that via photo-excitation of the monolayer graphene, coherent acoustic phonons with momentum in the out-of-plane direction were generated and had propagated into the substrate. This result suggested that by depositing monolayer graphene on top of a substrate, it can serve as an acoustic transducer. Afterwards, in order to reveal the full spectrum of the generated coherent acoustic phonons, a GaN crystal with a piezoelectric InGaN quantum well buried inside was used as the substrate. With our 3nm InGaN quantum well, detection band-width up to 2THz was achieved. The experimental results showed that the generated coherent acoustic phonon pulse had a bipolar shape and frequency components extending up to 1 THz (with the peak at 200GHz). In summary, by photo-exciting supported monolayer graphene, in spite of the two-dimensional nature of graphene, THz band-width coherent acoustic phonons that propagate perpendicularly to the surface and into the substrate can be generated. Hence, our study has confirmed the feasibility of using supported monolayer graphene as a THz acoustic transducer. A hypothesis based on the ultrafast carrier dynamics study of our supported graphene sample was brought up to elucidate the generation mechanism. A good correspondence was reached between the characteristics of the experimentally observed coherent acoustic phonon pulse and the prediction of the hypothesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:36:18Z (GMT). No. of bitstreams: 1 ntu-101-R99941018-1.pdf: 8744991 bytes, checksum: d5c2dc9cef17b733eb343ae45521da16 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 .................................................................................................................................. i
Abstract .......................................................................................................................... iii Content ............................................................................................................................ v List of Figures ............................................................................................................... vii List of Tables ................................................................................................................ xiii Chapter 1 Introduction ............................................................................................... 1 1.1 Ultrafast Non-Equilibrium Carrier Dynamics of Graphene ............................... 1 1.2 Graphene-Mediated Generation of Coherent Acoustic Phonon ......................... 3 1.3 Femtosecond Pump-Probe Technique ................................................................ 3 1.3.1 Pump-Probe Technique Used to Study Carrier Dynamics ...................... 5 1.3.2 Pump-Probe Technique Used to Study Coherent Acoustic Phonon ........ 6 1.4 Thesis Structure .................................................................................................. 7 Chapter 2 Experimental Principles ............................................................................ 8 2.1 Transient Transmission Difference ..................................................................... 8 2.2 Coherent Longitudinal Acoustic Phonon Generation ......................................... 9 2.3 Coherent Longitudinal Acoustic Phonon Detection ......................................... 12 2.3.1 Backward Brillouin Oscillation ............................................................. 12 2.3.2 Broad Band-Width Detection of Single Quantum Well ........................ 14 Chapter 3 Experimental Results on Graphene’s Carrier Dynamics .................... 16 3.1 Sample Description .......................................................................................... 16 3.2 Femtosecond Pump-Probe Experiment on Graphene Deposited on Sapphire . 17 3.2.1 Degenerate Pump-Probe with 1150nm Laser pulse ............................... 17 3.2.2 Degenerate Pump-Probe with 800nm Laser pulse ................................ 34 3.3 Conclusion ........................................................................................................ 40 vi Chapter 4 Generation of Longitudinal Coherent Acoustic Phonon Mediated by Graphene ....................................................................................................................... 42 4.1 Observation of Backward Brillouin Oscillation ............................................... 43 4.1.1 Graphene Deposited on the Sapphire Substrate .................................... 43 4.1.2 Graphene Deposited on a Glass Substrate ............................................. 45 4.2 Broad Bandwidth Detection of the Longitudinal CAP ..................................... 46 4.2.1 Backward Brillouin Oscillation ............................................................. 48 4.2.2 Detection with InGaN Single Quantum Well ........................................ 49 4.2.3 Thermal Annealed Sample ..................................................................... 52 4.2.4 Amplitude of the CAP Pulse .................................................................. 54 4.3 Longitudinal CAP Generation Mechanism ...................................................... 58 Chapter 5 Summary and Future Works ..................................................................... 75 Reference ....................................................................................................................... 78 | |
| dc.language.iso | en | |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 同調聲波 | zh_TW |
| dc.subject | 飛秒激發探測技術 | zh_TW |
| dc.subject | graphene | en |
| dc.subject | femtosecond pump probe technique | en |
| dc.subject | longitudinal coherent acoustic phonon | en |
| dc.title | 石墨烯超快載子釋能機制及次兆赫同調聲波激發研究 | zh_TW |
| dc.title | Ultrafast Carrier Relaxation and Sub-Terahertz Longitudinal Coherent Acoustic Phonon Generation Studies in Graphene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張玉明,張之威,林宮玄 | |
| dc.subject.keyword | 石墨烯,同調聲波,飛秒激發探測技術, | zh_TW |
| dc.subject.keyword | graphene,longitudinal coherent acoustic phonon,femtosecond pump probe technique, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-10-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 8.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
