請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張富雄(Fu-Hsiung Chang) | |
| dc.contributor.author | Sheng-Jie Lan | en |
| dc.contributor.author | 藍聖傑 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:35:57Z | - |
| dc.date.available | 2013-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-10-24 | |
| dc.identifier.citation | 1 Tagami, T., Foltz, W.D., Ernsting, M.J., Lee, C.M., Tannock, I.F., May,
J.P.,and Li, S.D. (2011) MRI monitoring of intratumoral drug delivery and predIction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials,32, 6570-6578. 2 Haddad, D., Hildenbrand, M.F., Hiller, K.H., Haddad-Weber, M., and Jakob, P.M. (2011)Specific identification of iron oxide-labeled stem cells using magnetic field hyperthermia and MR thermometry. NMR Biomed., 25, 402-409. 3 Naqvi, S., Samim, M., Abdin, M., Ahmed, F.J., Maitra, A., Prashant, C., and Dinda, A.K. (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomed.,5, 983-989. 4 Elsherbini, A.A., Saber, M., Aggag, M., El-Shahawy, A., and Shokier, H.A. (2011) Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magn. Reson. Imaging,29, 272-280. 5 Fan, C., Gao, W., Chen, Z., Fan, H., Li, M., and Deng, F. (2011) Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm.,404, 180-190. 6 Rastogi, R., Gulati, N., Kotnala, R.K., Sharma, U., Jayasundar, R., and Koul, V. (2011) Evaluation of folate conjugated pegylated thermosensitve magnetic nanocomposites for tumor imaging and therapy. Colloids Surf B Biointerfaces, 82, 160-167. 7 Y. Shido ., Y. Nishida ., Y. Suzuki ., T. Kobayashi ., and N. Ishiguro. 44 ( 2010) Targeted hyperthermia using magnetite cationic liposomes and an alternating magnetic field in a mouse osteosarcoma model . J. Bone. Joint. Surg. Br., 92 , 580-585. 8 Tai, L.A., Tsai, P.J., Wang, Y.C., Wang, Y.J., Lo, L.W., and Yang, C.S. (2009). Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. Nanotechnology, 20, 135-145. 9 Coventry, BJ., Macardle,PJ.,et al. (1994) A technique for successful transplantion of tumors into ear-pouches of nude mice to maintain and study thr tumor microenvironment. Surgical Oncology, 3 , 127-129. 10 Basel, M.T., Balivada, S., Wang, H., Shrestha, T.B., Seo, G.M., Pyle, M., Abayaweera, G., Dani, R., Koper, O.B., Tamura, M., et al. (2012) Cell-delivered magnetic nanoparticles caused hyperthermia mediated increased survival in a murine pancreatic cancer model. Int. J. Nanomed., 7, 297-306. 11 Ito, A., Tanaka, K., Honda, H., Abe, S., Yamaguchi, H., and Kobayashi, T. (2003). Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J. Biosci Bioeng, 96, 364-369. 12 Kawai, N., Futakuchi, M., Yoshida, T., Ito, A., Sato, S., Naiki, T., Honda, H., Shirai, T., and Kohri, K. (2008) Effect of heat therapy using magnetic nanoparticles conjugated with cationic liposomes on prostate tumor in bone. Prostate, 68, 784-792. 13 Zhai, Y., Xie, H., and Gu, H. (2009) Effects of hyperthermia with dextran magnetic fluid on the growth of grafted H22 tumor in mice. Int. J. Hyperthermia, 25, 65-71. 45 14 Rodriguez-Luccioni, H.L., Latorre-Esteves, M., Mendez-Vega, J., Soto, O., Rodriguez, A.R., Rinaldi, C., and Torres-Lugo, M.(2011) Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int. J. Nanomed., 6, 373-380. 15 Fumiko Matsuoka , Masashige Shinkai , Hiroyuki Honda ,Tadahiko Kubo , Takashi Sugita and Takeshi Kobayashi. (2004) Hyperthermia using magnetite cationic liposomes for hamster Osteosarcoma. BioMagn. Res. Tech., 2 , 1-6. 16 Jun Motoyama , Noriyuki Yamashita , Tomio Morino , Masashi Tanaka , ,Takeshi Kobayashi and Hiroyuki Honda. (2008) Hyperthermic treatment of DMBA-induced rat mammary cancer using magnetic nanoparticles . BioMagn. Res. Tech., 6 , 1-6. 17 Mitsugu Yanase , Masashige Shinkai , Hiroyuki Honda , Toshihiko Wakabayashi , Jun Yoshida and Takeshi Kobayashi. (1998) Intracellular hyperthermia for cancer using magnetite cationic liposomes: An in vivo Study. J. Cancer Res., 89, 463–470. 18 Kouji Tanaka , Akira Ito , Takeshi Kobayashi , Tatsuyoshi Kawamura , Shinji Shimada , Kazuhiko Matsumoto ,Toshiaki Saida and Hiroyuki Honda.(2005) Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int. J. Cancer, 116, 624–633. 19 Manfred Johannsen , Burghard Thiesen , Andreas Jordan , Kasra Taymoorian , Uwe Gneveckow , Norbert Waldofner, Regina Scholz , Martin Koch , Michael Lein , Klaus Jung and Stefan A. Loening. (2005) Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in 46 the orthotopic dunning R3327 rat model. Prostate, 64 ,283-292. 20 Sivasai Balivada , Raja Shekar Rachakatla , Hongwang Wang , Thilani N Samarakoon , Raj Kumar Dani , Marla Pyle ,Franklin O Kroh , Brandon Walker , Xiaoxuan Leaym , Olga B Koper , Masaaki Tamura , Viktor Chikan ,Stefan H Bossmann , Deryl L Troyer. (2010) A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer, 10,119.-128. 21 Zhao, Q., Wang, L., Cheng, R., Mao, L., Arnold, R.D., Howerth, E.W., Chen, Z.G., and Platt, S. Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics, 2, 113-121. 22 Ren, Y., Zhang, H., Chen, B., Cheng, J., Cai, X., Liu, R., Xia, G., Wu, W., Wang, S., Ding, J., et al. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance. Int. J. Nanomed., 7, 2261-2269. 23 Paul Moroz , Stephen K. Jones AND Bruce N. Gray. (2002) Tumor Response to Arterial Embolization Hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J. Surgical Oncology, 80 ,1 49-156. 24 Akira Ito , Masatake Fujioka , Tatsuro Yoshida , Kazumasa Wakamatsu ,Shosuke Ito , Toshiharu Yamashita , Kowichi Jimbow and Hiroyuki Honda. (2006) 4-S-Cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma. Cancer Sci., 98 , 423-430. 25 Pallab Pradhan , Jyotsnendu Giri , Gopal Samanta , Haladhar Dev 47 Sarma , Kaushala Prasad Mishra , Jayesh Bellare , Rinti Banerjee and Dhirendra Bahadur. (2006) Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J. Biomed. Materials Res., 10 , 11-22. 26 Ito, A., Kuga, Y., Honda, H., Kikkawa, H., Horiuchi, A., Watanabe, Y., and Kobayashi, T. (2004). Magnetite nanoparticle-loaded anti-HER2 immunosomes for combination of antibody therapy with hyperthermia.C ancer Lett., 212, 167-175. 27 Ito, A., Matsuoka, F., Honda, H., and Kobayashi, T. (2003). Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther., 10, 918-925. 28 Ito, A., Matsuoka, F., Honda, H., and Kobayashi, T. (2004). Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol. Immunother., 53, 26-32. 29 Robert Ivkov ,Sally J. DeNardo, Wolfgang Daum ,Allan R. Foreman ,Robert C. Goldstein ,Valentin S. Nemkov, and Gerald L. DeNardo. (2005) Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin. Cancer Res. , 11 ,7093-7103. 30 Dewhirst, M.W., Viglianti, B.L., Lora-Michiels, M., Hanson, M., and Hoopes, P.J. (2003). Basic principles of thermal dosimetry and thermal thrrsholds for tissue damage from hyperthermia. Int. J. Hyperthermia, 19, 267-294. 31 Thiesen, B., and Jordan, A. (2008). Clinical applications of magnetic 48 nanoparticles for hyperthermia. Int. J. Hyperthermia, 24, 467-474. 32 Sonvico, F., Mornet, S., Vasseur, S., Dubernet, C., Jaillard, D., Degrouard, J., Hoebeke, J., Duguet, E., Colombo, P., and Couvreur, P. (2005). Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis,physicochemical characterization, and in vitro experiments. Bioconjug. Chem., 16, 1181-1188. 33 Yonezawa, M., Otsuka, T., Matsui, N., Tsuji, H., Kato, K.H., Moriyama, A., and Kato, T. (1996). Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro. Int. J. Cancer, 66, 347-351. 34 Satarkar, N.S., and Hilt, J.Z. (2008). Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Control. Release, 130, 246-251. 35 Kwangjae Cho ,XuWang ,Shuming Nie , Zhuo Chen and DongM. Shin. (2012) Therapeutic Nanoparticles for Drug Delivery in Cancer . Clin. Cancer Res., 10 , 1310-1316. 36 Joyce McCann , Fred Dietrich and Charles Rafferty. (1997) The genotoxic potential of electric and magnetic fields: an update. Mutat. Res., , 411 ,45–86. 37 Carmeliet , P., and Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249-257. 38 Coventry, B.J., Macardle, P.J., Skinner, J.M., and Bradley, J. (1994). A technique for successful transplantation of tumours into ear-pouches of nude mice to maintain and study the tumour microenvironment. Surg. Oncol., 3, 127-129. 49 39 Gottesman, M.M., Fojo, T., and Bates, S.E. (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2, 48-58. 40 Gradishar, W.J., Tjulandin, S., Davidson, N., Shaw, H., Desai, N., Bhar, P., Hawkins, M., and O'Shaughnessy, J. (2005). Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol., 23, 7794-7803. 41 Pelicano, H., Martin, D.S., Xu, R.H., and Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25, 4633-4646. 42 Pourtier-Manzanedo, A., Vercamer, C., Van Belle, E., Mattot, V., Mouquet, F., and Vandenbunder, B. (2003). Expression of an Ets-1 dominant-negative mutant perturbs normal and tumor angiogenesis in a mouse ear model. Oncogene, 22, 1795-1806. 43 Wong, H.L., Bendayan, R., Rauth, A.M., Xue, H.Y., Babakhanian, K., and Wu, X.Y. (2006). A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymerlipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther., 317, 1372- 1381. 44 Wu, W., Wieckowski, S., Pastorin, G., Benincasa, M., Klumpp, C., Briand, J.P., Gennaro, R., Prato, M., and Bianco, A. (2005). Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. Engl., 44, 6358-6362. 45 Liu, Q., Zhang, J., Xia, W., and Gu, H. (2012) Magnetic field enhanced cell uptake efficiency of magnetic silica mesoporous nanoparticles. 50 Nanoscale , 4, 3415-3421. 46 Mamani, J.B., Malheiros, J.M., Cardoso, E.F., Tannus, A., Silveira, P.H., and Gamarra, L.F. (2012) In vivo magnetic resonance imaging tracking of C6 glioma cells labeled with superparamagnetic iron oxide nanoparticles. Einstein (Sao Paulo),10, 164-170. 47 Gupta, A.K. and Gupta, M. (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021. 48 Mrinmoy De, Stanley S. Chou, Hrushikesh M. Joshi, and Vinayak P. Dravid. (2011) Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv. Drug Deliv. Rev., 63,1282-1299. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63342 | - |
| dc.description.abstract | 奈米粒子在近幾年來被廣泛應用在許多癌症治療,氧化鐵奈米粒子就是其中的一員,由於生物相容性高、特殊的磁性功能使得被廣泛應用在生物性研究上像是細胞標定、細胞分離、核磁共振、熱炙效應、遞送藥物等等。透過微脂粒包覆的氧化鐵奈米粒子有許多優點例如可以使得生物相容性提高、放置交變磁場下,可以產生熱炙效應進而達到治療的效果。腫瘤生長速度快,所以需要大量的養份提供,進而會分泌一些促進血管生成的因子像是VEGF、FGF 等等。促使周遭的血管沿伸至腫瘤處此種現象稱為血管新生,血管新生對於腫瘤的生長、遷移都是非常重要的,血管新生也可以被當作早期腫瘤偵測的指標及治療的目標。在本篇研究中利用小鼠耳朵腫瘤模式 (Mouse Ear Tumor Model),對腫瘤進行觀察,因為耳朵薄且透光的特性,使得我們可以較容易觀測到腫瘤的生長及周圍的血管變化。我將正價脂質與膽固醇奈米化製成正價奈米微脂粒,並將此包覆氧化鐵奈米粒子,大小約為120~150 nm。並打入小鼠耳朵腫瘤進行實驗,實驗分成兩部分,第一部分將打入奈米粒子的小鼠放置於核磁共振儀器上觀測。第二部分將打入磁性奈米粒子的小鼠放置於200 高斯的交變磁場下,使磁性奈米
粒子產生熱炙效應進而對腫瘤產生抑制效果,觀察一星期後將小鼠犧牲,將腫瘤做切片處理觀察是否有治療效果。綜合以上結果:我透過小鼠耳朵腫瘤模式可以較方便及長時間的觀測腫瘤的生長變化。我們可以核磁共振儀器清楚觀測到磁性奈米粒子在腫瘤內的核磁共振訊號。.打入腫瘤的磁性奈米粒子可以在200 高斯的交變磁場下產生熱炙效應,雖然可以產生抑制生長的效果但是治療卻不顯著,原因可能為磁性奈米粒子的量太少或是產生的交變磁場不夠強。將來若可以提高打入磁性奈米粒子的量或是提升交變磁場產生的強度,可能可以將腫瘤的治療效果提升。 | zh_TW |
| dc.description.abstract | Nanoparticles are widely applied in many researches and cancer therapies. Superparamagnetic iron oxide nanoparticle (SPIO) which is lesstoxic and its magnetic property is widely applied in many biological studies,such as cell labeling, cell sorting, cell therapy, magnetic resonance imaging (MRI), hyperthermia, and drug delivery. Liposome encapsulated SPIO is called L-SPIOs. Recently L-SPIOs are widely used in disease therapy because of the advantages of L-SPIOs such as they have more biological compatibility, they can be modified with targeting ligand/antibody or magnetic field to promote specific targeting, they can induce hyperthermia on alternating magnetic field to apply in cancer therapy. Angiogenesis, new blood vessels sprouting from pre-existing vessels, is essential for tumor growth,invasion and metastasis. It can be used as a biomarker for early stage tumor diagnosis and targeted therapy. To visualize angiogenesis many molecular
imaging modalities have been used. In this research, we used mouse ear model to observe tumor growth, and angiogenesis easily. GEC-Chol/chol was established were used to encapsulate SPIOs to formulate L-SPIOs which is about 120~150 nm in diameter. L-SPIOs were used with its magnetic property on MRI signal to study the nanoparticles distribution in mouse ear tumor model. In addition, I use L-SPIOs to induce hyperthermia on alternating magnetic field (AMF) to treatment cancer on this mouse ear tumor model. My results showed the mouse ear tumor can be suppressed growth on 200 Oe AMF and the suppressed affect can be dependent on amount of L-SPIOs dose. With this results , I can observe tumor easily and nanoparticle distribution on mouse ear tumor model. I also observed that L-SPIOs can affect tumor growth by hyperthermia. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:35:57Z (GMT). No. of bitstreams: 1 ntu-101-R99442027-1.pdf: 4558636 bytes, checksum: 68f4c7462ce5894142047bd7837c0159 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………… i
謝誌…………………………………………………………………………………ii 中文摘要……………………………………………………………………………iii 英文摘要……………………………………………………………………………iv 第一章 緒論…………………………………………………………………………1 1.1 多功能奈米粒子…………………………………………………………1 1.2 癌症治療…………………………………………………………………2 1.3 非線性顯微術……………………………………………………………3 1.4 磁性奈米粒子……………………………………………………………4 1.5 氧化鐵奈米粒子…………………………………………………………5 1.5.1 核磁共振造影的顯影劑 …………………………………………5 1.5.2 遞送藥物…………………………………………………………6 1.5.3 磁熱效應…………………………………………………………6 1.6 研究動機………………………………………………………………10 第二章 實驗材料與方法…………………………………………………………11 2.1 實驗材料………………………………………………………………11 2.1.1 腫瘤細胞株………………………………………………………11 2.1.2 實驗動物…………………………………………………………11 2.1.3 奈米粒子…………………………………………………………11 2.1.4 脂質………………………………………………………………11 2.1.5 儀器………………………………………………………………12 2.2 實驗方法 ………………………………………………………………12 2.2.1 磁性奈米粒子之製備 (化學共沉法) …………………………12 2.2.2 GEC-Chol/Chol 正價奈米脂微粒製備………………………13 2.2.3 GCC 包覆氧化鐵奈米粒子製備 (L-SPIOs)…………………13 2.2.4 利用穿透式電子顯微鏡觀察正價奈米脂微粒的影像 ………12 2.2.5 老鼠耳朵腫瘤模式建立………………………………………14 2.2.6 老鼠耳朵腫瘤觀測及計算方法………………………………15 2.2.7 L-SPIOs 對腫瘤生長之毒性分析……………………………15 2.2.8 L-SPIOs 在腫瘤內核磁共振訊號……………………………16 2.2.9 不同濃度SPIOs 對腫瘤毒性之分析…………………………17 2.2.10 L-SPIOs 在交變磁場下腫瘤治療之分析……………………18 2.2.11 以L-SPIOs 的核磁共振訊號在腫瘤上模擬藥物擴散………18 第三章 實驗結果………………………………………………………………20 3.1 GEC-Chol/Chol 正價奈米脂微粒及GEC-Chol/Chol 包覆氧化 鐵奈米粒子大小及電位…………………………………………20 3.2 老鼠耳朵腫瘤模式建立以及觀測………………………………20 3.3 L-SPIOs 對腫瘤組織的毒性分析……………………………21 3.4 L-SPIOs 在腫瘤組織上核磁共振訊號之產生………………21 3.5 SPIOs 對腫瘤組織的毒性分析………………………………22 3.6 L-SPIOs 在交變磁場下對腫瘤的治療效果…………………22 3.7 以L-SPIOs 模擬藥物在腫瘤擴散情況…………………………23 第四章 討論……………………………………………………………………25 4.1 小鼠耳朵腫瘤模式的建立………………………………………25 4.2 氧化鐵奈米粒子在腫瘤影像、熱炙效應的分析…………………25 4.3 L-SPIOs 在癌症治療上的優點及缺點……………………28 第五章 圖表與說明……………………………………………………………29 第六章 參考文獻 ……………………………………………………………43 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超順磁奈米粒子 | zh_TW |
| dc.subject | 磁熱效應 | zh_TW |
| dc.subject | 小鼠耳朵腫瘤模式 | zh_TW |
| dc.subject | Mouse Ear Tumor Model | en |
| dc.subject | Superparamagnetic iron oxide nanoparticle | en |
| dc.subject | Hperthermia | en |
| dc.title | 利用磁性奈米粒子作為交變磁場造成熱治療之初步影響分析 | zh_TW |
| dc.title | Utilization of magnetic nanoparticles for alternating current hyperthermia : A preliminary analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許金玉(JIN-YU HU),張明富(MING-FU Chang),林文澧(WUN-LI LIN) | |
| dc.subject.keyword | 小鼠耳朵腫瘤模式,磁熱效應,超順磁奈米粒子, | zh_TW |
| dc.subject.keyword | Mouse Ear Tumor Model,Hperthermia,Superparamagnetic iron oxide nanoparticle, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-10-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
