請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63339完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林唯芳 | |
| dc.contributor.author | Sheng-Hao Hsu | en |
| dc.contributor.author | 許勝豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:35:47Z | - |
| dc.date.available | 2017-11-22 | |
| dc.date.copyright | 2012-11-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-10-29 | |
| dc.identifier.citation | 1. J. B. Summitt, J. W. Robbins and R. S. Schwartz, Fundamentals of Operative Dentistry, Quintesence Publishing Co, Inc, Illinois, 2001.
2. M. Giannini, C. J. Soares and R. M. de Carvalho, Dental Materials, 2004, 20, 322-329. 3. M. Rosin, A. D. Urban, C. Gartner, O. Bernhardt, C. Splieth and G. Meyer, Dental Materials, 2002, 18, 521-528. 4. A. W. G. Walls, J. F. McCabe and J. J. Murray, Journal of Dentistry, 1988, 16, 177-181. 5. C. L. Davidson and A. J. Degee, Journal of Dental Research, 1984, 63, 146-148. 6. O. B. W. J., Dental Materials and Their Selection, Quintessence Publishing Co, Inc, Illinois, 2002. 7. A. J. Feilzer, A. J. Degee and C. L. Davidson, Journal of Prosthetic Dentistry, 1988, 59, 297-300. 8. B. Ciucchi, S. Bouillaguet, M. Delaloye and J. Holz, Journal of Dentistry, 1997, 25, 305-312. 9. R. L. Sakaguchi, A. Versluis and W. H. Douglas, Dental Materials, 1997, 13, 233-239. 10. H. X. Berge and R. L. Sakaguchi, Journal of Dental Research, 1995, 74, 183-183. 11. N. Moszner and U. Salz, Progress in Polymer Science, 2001, 26, 535-576. 12. P. C. Pattamanuch, L. Musanje and J. L. Ferracane, Journal of Dental Research, 2002, 81, A337-A337. 13. J. L. Robertson, J. L. Ferracane and J. R. Condon, Journal of Dental Research, 2000, 79, 443-443. 14. H. Elbishari, J. Satterthwaite and N. Silikas, International Journal of Molecular Sciences, 2011, 12, 5330-5338. 15. E. Lihua, M. Irie, N. Nagaoka, T. Yamashiro and K. Suzuki, Dental Materials Journal, 2010, 29, 253-261. 16. J. Leprince, W. M. Palin, T. Mullier, J. Devaux, J. Vreven and G. Leloup, Journal of Oral Rehabilitation, 2010, 37, 364-376. 17. C. Park and R. E. Robertson, Dental Materials, 1998, 14, 385-393. 18. K. Hatanaka, M. Irie, R. Tjandrawinata and K. Suzuki, Dental Materials Journal, 2006, 25, 655-663. 19. R. Tjandrawinata, M. Irie, Y. Yoshida and K. Suzuki, Dental Materials Journal, 2004, 23, 146-154. 20. M. H. Chen, Journal of Dental Research, 2010, 89, 549-560. 21. J. R. C. Queiroz, P. Benetti, M. Ozcan, L. F. C. de Oliveira, A. Della Bona, F. E. Takahashi and M. A. Bottino, Dental Materials, 2012, 28, 189-196. 22. B. S. Lim, J. L. Ferracane, R. L. Sakaguchi and J. R. Condon, Dental Materials, 2002, 18, 436-444. 23. C. E. Campodonico, D. Tantbirojn, P. S. Olin and A. Versluis, Journal of the American Dental Association, 2011, 142, 1176-1182. 24. M. E. Kim and S. H. Park, Operative Dentistry, 2011, 36, 326-334. 25. J. H. Ge, M. Trujillo and J. Stansbury, Dental Materials, 2005, 21, 1163-1169. 26. N. Moszner and U. Salz, Macromolecular Materials and Engineering, 2007, 292, 245-271. 27. C. A. Khatri, J. W. Stansbury, C. R. Schultheisz and J. M. Antonucci, Dental Materials, 2003, 19, 584-588. 28. C. Y. Chen, C. K. Huang, S. P. Lin, J. L. Han, K. H. Hsieh and C. P. Lin, Composites Science and Technology, 2008, 68, 2811-2817. 29. N. Satsangi, H. R. Rawls and B. K. Norling, Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2004, 71B, 153-158. 30. T. Buruiana, V. Melinte, G. Costin and E. C. Buruiana, Journal of Polymer Science Part a-Polymer Chemistry, 2011, 49, 2615-2626. 31. W. F. A. Su, Journal of Polymer Science Part a-Polymer Chemistry, 1993, 31, 3251-3256. 32. W. F. A. Su, K. C. Chen and S. Y. Tseng, Journal of Applied Polymer Science, 2000, 78, 446-451. 33. G. G. Barclay, C. K. Ober, K. I. Papathomas and D. W. Wang, Journal of Polymer Science Part A: Polymer Chemistry, 1992, 30, 1831-1843. 34. A. Mititelu-Mija and C. N. Cascaval, High Performance Polymers, 2007, 19, 135-146. 35. M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Ishigaki, N. Shimoyama and H. Aoki, Journal of Polymer Science Part B-Polymer Physics, 2003, 41, 1739-1743. 36. M. Harada, Y. Watanabe, Y. Tanaka and M. Ochi, Journal of Polymer Science Part B-Polymer Physics, 2006, 44, 2486-2494. 37. M. Harada, K. Sumitomo, Y. Nishimoto and M. Ochi, Journal of Polymer Science Part B: Polymer Physics, 2009, 47, 156-165. 38. M. Harada, N. Akamatsu, M. Ochi and M. Tobita, Journal of Polymer Science Part B: Polymer Physics, 2006, 44, 1406-1412. 39. M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Ishigaki, N. Shimoyama and H. Aoki, Journal of Polymer Science Part B: Polymer Physics, 2004, 42, 758-765. 40. T. X. Liu, I. Y. Phang, L. Shen, S. Y. Chow and W. D. Zhang, Macromolecules, 2004, 37, 7214-7222. 41. A. A. Koval'chuk, A. N. Shchegolikhin, V. G. Shevchenko, P. M. Nedorezova, A. N. Klyamkina and A. M. Aladyshev, Macromolecules, 2008, 41, 3149-3156. 42. K. B. Lu, N. Grossiord, C. E. Koning, H. E. Miltner, B. van Mele and J. Loos, Macromolecules, 2008, 41, 8081-8085. 43. S. Wang, R. Liang, B. Wang and C. Zhang, Nanotechnology, 2008, 19, 085710. 44. S. Chen, S. H. Hsu, M. C. Wu and W. F. Su, Journal of Polymer Science Part B-Polymer Physics, 2010, 49, 301-309. 45. W. Barthlott and C. Neinhuis, Planta, 1997, 202, 1-8. 46. T. Wagner, C. Neinhuis and W. Barthlott, Acta Zoologica, 1996, 77, 213-225. 47. X. F. Gao and L. Jiang, Nature, 2004, 432, 36-36. 48. A. B. D. Cassie and S. Baxter, Transactions of the Faraday Society, 1944, 40, 0546-0550. 49. R. N. Wenzel, Industrial and Engineering Chemistry, 1936, 28, 988-994. 50. A. W. Neumann and R. J. Good, Journal of Colloid and Interface Science, 1972, 38, 341-&. 51. Y. T. Cheng and D. E. Rodak, Applied Physics Letters, 2005, 86. 52. A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley and R. E. Cohen, Science, 2007, 318, 1618-1622. 53. A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley and R. E. Cohen, Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18200-18205. 54. J. B. Boreyko, C. H. Baker, C. R. Poley and C.-H. Chen, Langmuir, 2011, 27, 7502-7509. 55. A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi and A. Fujishima, Langmuir, 2000, 16, 7044-7047. 56. L. Joly and T. Biben, Soft Matter, 2009, 5, 2549-2557. 57. A. Vilcnik, I. Jerman, A. S. Vuk, M. Kozelj, B. Orel, B. Tomsic, B. Simonic and J. Kovac, Langmuir, 2009, 25, 5869-5880. 58. Q. F. Xu, J. N. Wang and K. D. Sanderson, Acs Nano, 2010, 4, 2201-2209. 59. A. J. Meuler, J. D. Smith, K. K. Varanasi, J. M. Mabry, G. H. McKiney and R. E. Cohen, Acs Applied Materials & Interfaces, 2010, 2, 3100-3110. 60. K. K. Baikerikar and A. B. Scranton, Polymer, 2001, 42, 431-441. 61. J. N. Tey, A. M. Soutar, S. G. Mhaisalkar, H. Yu and K. M. Hew, Thin Solid Films, 2006, 504, 384-390. 62. I. S. Liu, Y. F. Chen and W. F. Su, Journal of Photochemistry and Photobiology a-Chemistry, 2008, 199, 291-296. 63. I. Langmuir, Proceedings of the National Academy of Sciences of the United States of America, 1928, 14, 627-637. 64. A. Fridman and L. A. Kennedy, Plasma Physics and Engineering, Taylor & Franics, New York, 2004. 65. M. A. Sobolewski, J. G. Langan and B. S. Felker, Journal of Vacuum Science & Technology B, 1998, 16, 173-182. 66. M. Popp, S. Hann and G. Koellensperger, Analytica Chimica Acta, 2010, 668, 114-129. 67. A. A. Oliveira, L. C. Trevizan and J. A. Nobrega, Applied Spectroscopy Reviews, 2010, 45, 447-473. 68. L. Balcaen, L. Moens and F. Vanhaecke, Spectrochimica Acta Part B-Atomic Spectroscopy, 2010, 65, 769-786. 69. C. Agatemor and D. Beauchemin, Analytica Chimica Acta, 2011, 706, 66-83. 70. M. Schaepkens and G. S. Oehrlein, Journal of the Electrochemical Society, 2001, 148, C211-C221. 71. J. Hopwood, Plasma Sources Science & Technology, 1992, 1, 109-116. 72. F. Leroux, A. Perwuelz, C. Campagne and N. Behary, Journal of Adhesion Science and Technology, 2006, 20, 939-957. 73. F. Leroux, C. Campagne, A. Perwuelz and L. Gengembre, Surface & Coatings Technology, 2009, 203, 3178-3183. 74. S. Kanazawa, M. Kogoma, T. Moriwaki and S. Okazaki, Journal of Physics D-Applied Physics, 1988, 21, 838-840. 75. K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides and C. Cardinaud, Langmuir, 2009, 25, 11748-11759. 76. M. Anand, R. E. Cohen and R. F. Baddour, Polymer, 1981, 22, 361-371. 77. J. P. Youngblood and T. J. McCarthy, Macromolecules, 1999, 32, 6800-6806. 78. A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo and F. Rossi, Langmuir, 2007, 23, 12984-12989. 79. E. L. Lakomaa, S. Haukka and T. Suntola, Applied Surface Science, 1992, 60-1, 742-748. 80. M. Ahonen, M. Pessa and T. Suntola, Thin Solid Films, 1980, 65, 301-307. 81. T. Suntola and J. Hyvarinen, Annual Review of Materials Science, 1985, 15, 177-195. 82. S. M. George, Chemical Reviews, 2010, 110, 111-131. 83. Q. Peng, X.-Y. Sun, J. C. Spagnola, G. K. Hyde, R. J. Spontak and G. N. Parsons, Nano Letters, 2007, 7, 719-722. 84. L. Niinisto, J. Paivasaari, J. Niinisto, M. Putkonen and M. Nieminen, Physica Status Solidi a-Applied Research, 2004, 201, 1443-1452. 85. M. Leskela, Acta Polytechnica Scandinavica-Chemical Technology Series, 1990, 67-80. 86. R. L. Puurunen, Chemical Vapor Deposition, 2005, 11, 79-90. 87. M. Tiitta and L. Niinisto, Chemical Vapor Deposition, 1997, 3, 167-182. 88. A. Sherman, Atomic Layer Deposition for Nanotechnology, Noyes Publications, New Jersey, 2008. 89. B. S. Lim, A. Rahtu and R. G. Gordon, Nature Materials, 2003, 2, 749-754. 90. T. Aaltonen, A. Rahtu, M. Ritala and M. Leskela, Electrochemical and Solid State Letters, 2003, 6, C130-C133. 91. G. Natarajan, P. S. Maydannik, D. C. Cameron, I. Akopyan and B. V. Novikov, Applied Physics Letters, 2010, 97. 92. T. Pilvi, K. Arstila, M. Leskela and M. Ritala, Chemistry of Materials, 2007, 19, 3387-3392. 93. T. Pilvi, E. Puukilainen, U. Kreissig, M. Leskelae and M. Ritala, Chemistry of Materials, 2008, 20, 5023-5028. 94. C. Brahim, F. Chauveau, A. Ringuede, M. Cassir, M. Putkonen and L. Niinistoe, Journal of Materials Chemistry, 2009, 19, 760-766. 95. M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen and H. Fjellvag, Journal of Materials Chemistry, 2009, 19, 8767-8771. 96. B. Yoon, D. Seghete, A. S. Cavanagh and S. M. George, Chemistry of Materials, 2009, 21, 5365-5374. 97. J. Niinisto, K. Kukli, M. Heikkila, M. Ritala and M. Leskela, Advanced Engineering Materials, 2009, 11, 223-234. 98. E. Granneman, P. Fischer, D. Pierreux, H. Terhorst and P. Zagwijn, Surface & Coatings Technology, 2007, 201, 8899-8907. 99. S. B. S. Heil, J. L. van Hemmen, C. J. Hodson, N. Singh, J. H. Klootwijk, F. Roozeboom, M. C. M. v. de Sanden and W. M. M. Kessels, Journal of Vacuum Science & Technology A, 2007, 25, 1357-1366. 100. H. B. Profijt, S. E. Potts, M. C. M. van de Sanden and W. M. M. Kessels, Journal of Vacuum Science & Technology A, 2011, 29. 101. D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery-Corvan and L. M. Irving, Applied Physics Letters, 2008, 92. 102. D. H. Levy, S. F. Nelson and D. Freeman, Journal of Display Technology, 2009, 5, 484-494. 103. P. S. Maydannik, T. O. Kaariainen and D. C. Cameron, Chemical Engineering Journal, 2011, 171, 345-349. 104. K. Lahtinen, P. Maydannik, P. Johansson, T. Kaariainen, D. C. Cameron and J. Kuusipalo, Surface & Coatings Technology, 2011, 205, 3916-3922. 105. W. M. M. Kessels and M. Putkonen, Mrs Bulletin, 2011, 36, 907-913. 106. Y. Kim, C. K. Kim, B. H. Cho, H. H. Son, C. M. Um and O. Y. Kim, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 70B, 82-90. 107. M. Atai, M. Ahmadi, S. Babanzadeh and D. C. Watts, Dental Materials, 2007, 23, 1030-1041. 108. J. W. He, Y. F. Luo, F. Liu and D. M. Jia, Journal of Biomaterials Applications, 2010, 25, 235-249. 109. L. U. Kim, J. W. Kim and C. K. Kim, Biomacromolecules, 2006, 7, 2680-2687. 110. W. W. Liu, X. P. He, A. C. Mo, Q. Q. Yao, J. Ye and N. Jing, International Journal of Nanomedicine, 2011, 6, 1787-1791. 111. T. Kato, T. Nakamura, Y. Agari and M. Ochi, Journal of Applied Polymer Science, 2007, 103, 3169-3174. 112. G. Odian, Principles of Polymerization, Wiley-Interscience, New York, 2004. 113. D. A. Tilbrook, R. L. Clarke, N. E. Howle and M. Braden, Biomaterials, 2000, 21, 1743-1753. 114. W. Weinmann, C. Thalacker and R. Guggenberger, Dental Materials, 2005, 21, 68-74. 115. M. H. Chen, C. R. Chen, S. H. Hsu, S. P. Sun and W. F. Su, Dental Materials, 2006, 22, 138-145. 116. N. Ilie, E. Jelen, T. Clementino-Luedemann and R. Hickel, Dental Materials Journal, 2007, 26, 149-155. 117. W. F. Su, H. W. Huang and W. P. Pan, Thermochimica Acta, 2002, 392, 391-394. 118. S. Chen, S. H. Hsu, M. C. Wu and W. F. Su, Journal of Polymer Science Part B: Polymer Physics, 2011, 49, 301-309. 119. S. H. Hsu, M. C. Wu, S. Chen, C. M. Chuang, S. H. Lin and W. F. Su, Carbon, 2012, 50, 896-905. 120. M. Atai, D. C. Watts and Z. Atai, Biomaterials, 2005, 26, 5015-5020. 121. S. P. Pappas, UV curing: Science and Technology, Technology Marleting Corporation, Connecticut, 1978. 122. R. A. Vaia and E. P. Giannelis, Mrs Bulletin, 2001, 26, 394-401. 123. C.-C. Lin, K.-H. Chang, K.-C. Lin and W.-F. Su, Composites Science and Technology, 2009, 69, 1180-1186. 124. C.-C. Lin, S.-H. Hsu, Y.-L. Chang and W.-F. Su, Journal of Materials Chemistry, 2010, 20, 3084-3091. 125. A. C. Balazs, T. Emrick and T. P. Russell, Science, 2006, 314, 1107-1110. 126. K. I. Winey and R. A. Vaia, Mrs Bulletin, 2007, 32, 314-319. 127. A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, Advanced Materials, 1999, 11, 1365-1368. 128. K. Tadanaga, J. Morinaga, A. Matsuda and T. Minami, Chemistry of Materials, 2000, 12, 590-592. 129. K. Tadanaga, J. Morinaga and T. Minami, Journal of Sol-Gel Science and Technology, 2000, 19, 211-214. 130. J. Bravo, L. Zhai, Z. Wu, R. E. Cohen and M. F. Rubner, Langmuir, 2007, 23, 7293-7298. 131. R. Taurino, E. Fabbri, M. Messori, F. Pilati, D. Pospiech and A. Synytska, Journal of Colloid and Interface Science, 2008, 325, 149-156. 132. A. Steele, I. Bayer and E. Loth, Nano Letters, 2009, 9, 501-505. 133. M. Sangermano, R. Bongiovanni, M. Longhin, G. Rizza, C. M. Kausch, Y. Kim and R. R. Thomas, Macromolecular Materials and Engineering, 2009, 294, 525-531. 134. Q. F. Xu, J. N. Wang, I. H. Smith and K. D. Sanderson, Journal of Materials Chemistry, 2009, 19, 655-660. 135. L. Cao and D. Gao, Faraday Discussions, 2010, 146, 57-65. 136. M. Im, H. Im, J.-H. Lee, J.-B. Yoon and Y.-K. Choi, Soft Matter, 2010, 6, 1401-1404. 137. S. T. Iacono, S. M. Budy, D. W. Smith, Jr. and J. M. Mabry, Journal of Materials Chemistry, 2010, 20, 2979-2984. 138. L. Y. Meng and S. J. Park, Journal of Colloid and Interface Science, 2010, 342, 559-563. 139. V. Fuentes, M. Toledano, R. Osorio and R. M. Carvalho, Journal of Biomedical Materials Research Part A, 2003, 66A, 850-853. 140. C. Chuenarrom, P. Benjakul and P. Daosodsai, Materials Research-Ibero-American Journal of Materials, 2009, 12, 473-476. 141. S. H. Hsu, R. S. Chen, Y. L. Chang, C. M. H., K. C. Cheng and W. F. Su, Acta Biomaterialia, 2012, 8, 4151-4161. 142. J. L. Ferracane, Critical Reviews in Oral Biology and Medicine, 1995, 6, 302-318. 143. J. J. M. Roeters, A. C. C. Shortall and N. J. M. Opdam, British Dental Journal, 2005, 199, 73-79. 144. K. C. Huth, H. Y. Chen, A. Mehl, R. Hickel and J. Manhart, Journal of Dentistry, 2011, 39, 478-488. 145. J. B. Quinn and G. D. Quinn, Dental Materials, 2010, 26, 589-599. 146. X.-q. Gan, Z.-b. Cai, B.-r. Zhang, X.-d. Zhou and H.-y. Yu, Tribology Letters, 2012, 46, 75-86. 147. J.-K. Kim, T.-H. Cheon, S.-H. Kim and Y.-B. Park, Japanese Journal of Applied Physics, 2012, 51. 148. T. O. Kaariainen, D. C. Cameron and M. Tanttari, Plasma Processes and Polymers, 2009, 6, 631-641. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63339 | - |
| dc.description.abstract | 於本論文中,我們於奈米複合材料中導入具有層狀結構之材料,製備新穎奈米複合材料。藉由此層狀材料與奈米粒子形成相互支撐的微結構大幅提高奈米複合材料之機械強度。
雙酚液晶環氧樹脂應用於牙科填補環氧奈米複合樹脂的研究中發現到雙酚液晶環氧樹脂的結晶在光聚合過程中發生部分溶解的現象,藉由此有序-無序的相轉變而有效降低材料之聚合收縮度。在高二氧化矽奈米粒子含量時,殘留的雙酚液晶環氧樹脂結晶與二氧化矽奈米粒子形成一奈米粒子包覆層狀之微結構(NPEL),當此微結構生成時材料之硬度以及彎曲模數皆明顯提升。 於超疏水以及疏油之透明奈米複合材料的開發中,我們以TCDDA (tricyclodecane dimethanol diacrylate) 以及二氧化矽奈米粒子製備複合材料薄膜並利用不同尺寸的奈米粒子於奈米複合材料中構成奈米級的團簇結構。之後以氧電漿蝕刻奈米複合材料表面使其粗糙化並使奈米顆粒曝露於表面。最後將氧電漿處理後的奈米複材以浸鍍 (dip-coating) 的方式於曝露之二氧化矽奈米顆粒表面鍍上氟碳偶合劑PFDTMES (1H,1H,2H,2H-perfluorodecyl trimethoxysilane)。我們藉著三步驟製程達製備了具備了超疏水及高疏油性之透明奈米複合材料,於此研究中確立了以氧電漿曝露於奈米複合材料表面之二氧化矽奈米粒子能再次以溶膠凝膠法(sol-gel process)進行表面改質,賦予材料新的特性。 我們以原子層沉積(atomic layer deposition, ALD)於奈米複合材料表面分別製備二氧化鋯與二氧化鉿陶瓷薄膜。為了使陶瓷薄膜與作為基材之奈米複合材料有良好之鍵結並產生層狀結構與奈米粒子相互支撐之結構以提高機械性質。最後將100 nm後的二氧化鉿以原子層沉積製備於經氧電漿處理之市售牙科填補複合材料上,其硬度提升超過100%且超越鈦金屬之硬度,而抗彎強度也有所提升。原子層沉積技術可應用於改善間接填補複合材料之機械性質。 | zh_TW |
| dc.description.abstract | Layered materials have been incorporated into nanocomposite. With the microstructure of layered material and nanoparticles supported each other, the nanocomposite has performed an unusual increase in mechanical properties
For biphenyl (BP) liquid crystalline (LC) epoxy resin-based dental restorative materials, the partial melting of BP crystalline has observed during photopolymerization and the polymerization shrinkage has been efficiently reduced via the volume expansion resulted from this order-disorder transition. At high filler content, A nanoparticles embedded layers (NPEL) microstructure of the residual layered BP crystalline embedded by nanoparticles presents that contributes an increase in hardness and flexural modulus to the nanocomposite. A superhydrophobic and oleophobic transparent nanocomposite has been fabricated via a 3-step process. First a silica/polyacrylate nanocomposite containing nano-sized aggregates has been made from tricyclodecane dimethanol diacrylate (TCDDA) and silica nanoparticles of different particle sizes. Then, the surface of nanocomposites has been treated with oxygen plasma to roughen the surface and expose the silica nanoparticles. Finally, the fluorosilane, 1H,1H,2H,2H-perfluorodecyl trimethoxysilane (PFDTTMES) has been grafted on the surface of oxygen plasma exposed silica nanoparticles by dip-coating. We have fabricated a superhydrophobic and oleophobic transparent nanocomposite and confirmed that sol-gel process is able to be conducted on the oxygen plasma exposed nanoparticle on the surface of nanocomposite. Hafnium oxide and zirconium oxide films were deposited on the surface of nanocomposite using atomic layer deposition (ALD) process, respectively. The nanoparticles of nanocomposite were exposed by oxygen plasma treatment to create strong interaction between deposited metal oxide and nanocomposite, which should increase the mechanical properties of nanocomposite. The hafnium oxide was deposited commercial nanocomposite has performed the hardness higher than titanium and the improved flexural strength. Thus, ALD technologies has the potential to improve the mechanical properties of indirect dental restorative compsosite. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:35:47Z (GMT). No. of bitstreams: 1 ntu-101-D95549005-1.pdf: 15057898 bytes, checksum: c915f0300a25338f4638524efb460448 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III List of Figures IX List of Tables XIII Chapter 1 Introduction 1 1.1 Resin-based Composite for Dental restoration 1 1.1.1 Composition of resin-based composites for direct restoration 2 1.1.1.1 Resin matrix 2 1.1.1.2 Fillers 4 1.1.1.3 Silane coupling agent 5 1.1.1.4 Microstructure of resin-based composites 6 1.1.2 Methods to reduce polymerization shrinkage 8 1.1.2.1 Molecule design of methacrylate monomers 9 1.1.2.2 Liquid crystalline methacrylates for low shrinkage dental restorative resin 12 1.2 morphology and physical properties of multi-walled carbon nanotube/biphenyl liquid crystalline epoxy composites 15 1.2.1 Organic-inorganic hybrid LC epoxy composites 17 1.2.2 Morphology of the composite of LC epoxy resin/CNT 19 1.3 Photosensitive fluoroimide acrylate/silica nanocomposite 24 1.3.1 Photocurable fluoroimide acrylate 25 1.3.2 Physical and chemical properties of nanocomposites 25 1.3.2.1 Transmittance of nanocomposites 28 1.3.2.2 Mechanical properties of nanocomposites 32 1.3.2.4 Hydrophobicity of nanocomposites 33 1.4 Plasma treatment for materials processing 35 1.4.1 Low pressure discharges 36 1.4.1.1 Glow discharges 36 1.4.1.2 Capacitively coupled plasmas (CCPs) 36 1.4.1.3 Inductively coupled plasmas (ICPs) 37 1.4.1.4 Microwave discharges 38 1.4.2 High pressure discharges 38 1.4.2.1 Corona discharge 38 1.4.2.2 Dielectric barrier discharge (DBD) 38 1.4.2.3 High pressure glow discharges 39 1.4.2.4 Arc discharges 39 1.4.2 Plasma for hydrophobic surface preparation 40 1.5 Atomic layer deposition (ALD) for nanotechnology 45 1.5.1 Introduction to Atomic layer deposition 45 1.5.2 Precursor chemistry of ALD 48 1.5.3 Applications of ALD 49 1.5.3.1. ALD for thin film preparation 50 1.5.4 New developments of ALD 52 Chapter 2 Biphenyl Liquid Crystalline Epoxy Resin for High Performance Low Shrinkage Resin-based Dental Restorative Nanocomposite 56 2.1 Introduction 56 2.2 Experimental 59 2.2.1 Materials 59 2.2.2 Preparation of light curable epoxy resins 61 2.2.3 Preparation of resin-based nanocomposites 63 2.2.4 Preparation of cured composite samples 65 2.2.5 Characterizations of photocurable epoxy resins and resin-based composite 66 2.2.6 Measurement of post-gelation shrinkage 69 2.2.7 Cell Culture and cytotoxicity 70 2.2.8 Statistic analysis 72 2.3 Result and Discussion 72 2.3.1 Photocurable E-BP series of epoxy resins 72 2.3.2 Characterization of E-BP00ZL and E-BP07ZL series resin-based nanocomposites 75 2.3.3 Performance comparison between liquid crystalline resin-based nanocomposite E-BP07ZL60 and commercial resin-based composites CMRs 85 2.3.4 Post-gelation shrinkage of resin-based composites 87 2.3.5 Cytotoxicity of restorative composites 89 2.4 Conclusion 93 Chapter 3 Grafting Perfluorosilane via Sol-gel process on Oxygen Plasma Exposed Silica Nanoparticle for Superhydrophobic and Oleophobic Transparent Polyacrylate/SiO2 Nanocomposite 95 3.1 Introduction 95 3.2 Experimental 97 3.2.1 Materials 97 3.2.2 Preparation of MPS modified silica colloidal solutions 98 3.2.3 Preparation of photocurable nanocomposite resin system 98 3.2.4 Preparation of nanocomposite samples 99 3.2.5 Preparation of oxygen plasma treated nanocomposite samples 99 3.2.6 Preparation of fluorosilane coated nanocomposite samples via dip-coating 100 3.2.7 Characterization of the nanocomposite 100 3.3 Result and discussion 102 3.3.1 Surface analysis of nanocomposites 102 3.3.2 De-wetting properties of the nanocomposite 107 3.3.3 Physicochemical properties of the nanocomposites 113 3.4 Conclusion 117 Chapter 4 Metal Oxide Films on Indirect Dental Restorative Nanocomposite via Atomic Layer Deposition for Improvement of Mechanical Properties 118 4.1 Introduction 118 4.2 Experimental 121 4.2.1 Materials 121 4.2.3 Sample preparation of E6ZL nanocomposite series 123 4.2.4 Preparation of oxygen plasma treated samples 124 4.2.5. Atomic layer deposition process 124 4.2.6 Characterization of composite samples 125 4.3 Result and discussion 126 4.3.1 Characterization of E6ZL nanocomposites with different surface treatment 126 4.3.2 Hardness comparison of HfO2 and ZrO2 deposited in oxygen plasma etched E6ZL nanocomposite series. 132 4.3.3 ALD HfO2 on oxygen plasma treated commercial composites 136 4.4 Conclusions 140 Recommendations and Future Works 142 References 143 | |
| dc.language.iso | en | |
| dc.subject | 二氧化鋯 | zh_TW |
| dc.subject | 原子層沉積 | zh_TW |
| dc.subject | 溶膠凝膠法 | zh_TW |
| dc.subject | 二氧化鉿. | zh_TW |
| dc.subject | 奈米複合材料 | zh_TW |
| dc.subject | 相轉變 | zh_TW |
| dc.subject | 液晶環氧樹脂 | zh_TW |
| dc.subject | 氧電漿 | zh_TW |
| dc.subject | hafnium oxide | en |
| dc.subject | order-disorder transition | en |
| dc.subject | nanocomposite | en |
| dc.subject | oxygen plasma | en |
| dc.subject | sol-gel process | en |
| dc.subject | atomic layer deposition | en |
| dc.subject | Liquid crystalline epoxy resin | en |
| dc.subject | zirconium oxide. | en |
| dc.title | 層狀結構奈米複合材料於牙科填補之應用 | zh_TW |
| dc.title | Layered Structure for Advanced Dental Restorative Nanocomposite | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳敏慧,蔡豐羽,游佳欣,曾琬瑜,莊智閔 | |
| dc.subject.keyword | 液晶環氧樹脂,相轉變,奈米複合材料,氧電漿,溶膠凝膠法,原子層沉積,二氧化鋯,二氧化鉿., | zh_TW |
| dc.subject.keyword | Liquid crystalline epoxy resin,order-disorder transition,nanocomposite,oxygen plasma,sol-gel process,atomic layer deposition,hafnium oxide,zirconium oxide., | en |
| dc.relation.page | 150 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-10-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 14.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
