請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63321完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝國煌 | |
| dc.contributor.author | Szu-Hsien Chen | en |
| dc.contributor.author | 陳思賢 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:34:47Z | - |
| dc.date.available | 2022-11-10 | |
| dc.date.copyright | 2012-11-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-11-13 | |
| dc.identifier.citation | [1] Sashiva H, Saimoto H, Sgigemasa Y, Ogawa R, Tokura S. Lysozyme susceptibility of partially deacetylated chitin. Int J BiolMacromol 1990;12:295–6.
[2] Datta PK, Basu PS, Datta TK. Isolation and characteriza- tion of Viciafabalectin affinity purified on chitin column. Prep Biochem 1984;14:373–87. [3] Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme MicrobiolTechnol 2004;35:126–39. [4] (a) Songkroah C, Nakbanpote W, Thiravetyan P. Recov- ery of silver–thiosulfate complexes with chitin. Process Biochem 2004;39:1553–9; [5] Kosyakov VN, Yakovlev NG, Veleshko IE. Applica- tion of chitin-containing fiber material „„mycoton‟‟ for actinide adsorption. J NuclSciTechnol 2002(suppl. 3): 508–11. [6] Austin PR, Brine J. Chitin films and fibers.USPatent 4,029,727; 1977. [7] Hirano S. Wet-spinning and applications of functional fibers based on chitin and chitosan. In: Arguelles-Monal W, editor.Natural and synthetic polymers: challenges and perspectives.MacromolSymp, vol. 168. Weinheim, Ger- many: Wiley-VCH Verlag GmbH; 2001. p. 21–30. [8] Hirano S, Midorikawa T. Novel method for the prepara- tion of N-acylchitosan fiber and N-acylchitosan–cellulose fiber. Biomaterials 1998;19:293–7. [9] Ogawa K. Effect of heating an aqueous suspension of chitosan on the crystallinity and polymorphs.AgricBiolChem 1991;55:2375–9. [10.] Ogawa K, Yui T, Miya M. Dependence on the preparation procedure of the polymorphism and crystallinity of chitosan membranes. Biosci Biotech Biochem 1992;56: 858–62. [11]Thanou M, Junginger HE. Pharmaceutical applications of chitosan and derivatives. 14 In: Dumitriu S, editor. Poly- saccharides.Structural diversity and functional versatility. 2nd ed. New York: Marcel Dekker Publ.; 2005. p. 661–77. [231]Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives.Chem Rev 2004;104:6017–84. [12]Illum L, Davis S. Chitosan as a delivery system for the transmucosal administration of drugs. In: Dumitriu S, editor. Polysaccharides.Structural diversity and functional versatility. 2d ed. New York: Marcel Dekker Publ.; 2005. p. 643–60. [13] Okada, M., Chemical syntheses of biodegradable polymers. Progress in Polymer Science, 2002. 27(1): p. 87-133. [14] Ray, S.S. and M. Bousmina, Biodegradable polymers and their layered silicate nano composites: In greening the 21st century materials world. Progress in Materials Science, 2005. 50(8): p. 962-1079. [15] Drumright, R.E., P.R. Gruber, and D.E. Henton, Polylactic acid technology. Advanced Materials, 2000. 12(23): p. 1841-1846. [16] Vink, E.T.H., et al., The sustainability of NatureWorks (TM) polylactide polymers and Ingeo (TM) polylactide fibers(a): an update of the future. Macromolecular Bioscience, 2004. 4(6): p. 551-564. [17] Bordes, P., E. Pollet, and L. Averous, Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 2009. 34(2): p. 125-155. [18] Auras, R., B. Harte, and S. Selke, An overview of polylactides as packaging materials. Macromolecular Bioscience, 2004. 4(9): p. 835-864. [19] Bayer, O.,*Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angewandte Chemie, 1947. 59(9): p. 257-272. [20] Chen, K.S., et al., Soft- and hard-segment phase segregation of polyester-based polyurethane. Journal of Polymer Research-Taiwan, 2001. 8(2): p. 99-109. 15 [21] Abouzahr, S. and G.L. Wilkes, Structure Property Studies of Polyester-Based and Polyether-Based Mdi-Bd Segmented Polyurethanes - Effect of One-Stage Vs 2-Stage Polymerization Conditions. Journal of Applied Polymer Science, 1984. 29(9): p. 2695-2711. [22] Woods, G. and ICI Polyurethanes (Firm), The ICI Polyurethanes book. 2nd ed1990, Chichester ; New York: Published jointly by ICI Polyurethanes and Wiley. [23]. Clemitson, I., Castable polyurethane elastomers2008, Boca Raton: CRC Press. [24] S. D. Yuwono, T. Kokugan, Biochem. Eng. J. 2008, 40,175. [25] F. Achmad, K.Yamane, S. Quan, T. Kokugan, Chem. Eng. J. 2009, 151, 342. [26] C. Nyambo, A. K. Mohanty, M. Misra, Macromol. Mater. Eng. 2011, 296, 710. [27] K. M. Zia, M. Barikani, M. Zuber, I. A. Bhatti, M. A. Sheikh, Carbohydr. Polym. 2008, 74, 149. [28] J. B. Zeng, Y. D. Li, Q. Y. Zhu, K. K. Yang, X. L. Wang, Y. Z. Wang, Polymer 2009, 50, 1178. [29] T. R. Cooper, R. F. Storey, Macromolecules 2008, 41, 655. [30] H. R. Kricheldorf, Chemosphere 2001, 43, 49. [31] O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 2004, 104, 6147. [32] K. Hiltunen, J. V. Seppala, M. Harkonen, J. Appl. Polym. Sci. 1997, 63, 1091. [33] K. Hiltunen, J. V. Seppala, M. Harkonen, Macromolecules 1997, 30, 373. [34] D. K. Gilding, A. M. Reed, Polymer 1979, 20, 1459. [35] K. M. Zia, M. Barikani, I. A. Bhatti, M. Zuber, M. Barmar, Carbohydr. Polym. 2009, 77, 54. [36] J. Dey, R. T. Tran, J. Shen, L. Tang, J. Yang, Macromol. Mater. Eng. 2011, 296, 1149. [37] E. Hablot, D. Zheng, M. Bouquey, L. Ave’rous, Macromol. Mater. Eng. 2008, 293, 922. [38] Y. Hori, M. Suzuki, Y. Okeda, T. Imai, M. Sakaguchi, Y. Takahashi, A. Yamaguchi, S. Akutagawa, Macromolecules 1992, 25, 5117. [39] K. Sreenivasan, M. Jayabalan, K. V. C. Rao, J. Appl. Polym. Sci. 1991, 43, 825. [40] J. Kylma, J. Tuominen, A. Helminen, J. Seppala, Polymer 2001, 42, 3333. [41] T. Ohkita, S. H. Lee, J. Appl. Polym. Sci. 2006, 100, 3009. [42] L. Liu, S. Li, H. Garreau, M. Vert, Biomacromolecules 2000, 1, 350. [43] W. D. Li, J. B. Zeng, Y. D. Li, X. L. Wang, Y. Z. Wang, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 5898. [44] Z. Xiong, J. B. Zeng, X. L. Wang, Y. R. Zhang, L. L. Li, Y. Z. Wang, Ind. Eng. Chem. Res. 2010, 49, 5986. [45] J. B. Zeng, Y. D. Li, Q. Y. Zhu, K. K. Yang, X. L. Wang, Y. Z. Wang, Polymer 2009, 50, 1178. [46] S. L. Cooper, A. V. J. Tobolsky, J. Appl. Polym. Sci. 1996, 10, 1837. [47] R. Bonart, E. H. Muller, J. Macromol. Sci. Phys. 1974, B10, 177. [48] C. S. P. Sung, C. B. Hu, C. S. Wu, Macromolecules 1980, 13, 111. [49] J. T. Koberstein, A. F. Galambos, L. M. Leung, Macromolecules 1992, 25, 6195. [50] M. V. Pandya, D. D. Deshpande, D. G. Hundiwale, J. Appl. Polym. Sci. 1988, 35, 1803. [51] R. Jayakumar, Y. S. Lee, M. Rajkumar, S. Nanjundan, J. Appl. Polym. Sci. 2004, 91, 288. [52] J. B. Guilbaud, B. C. Clark, E. Meehan, L. Hughes, A. Saiani, Y. Z. Khimyak, J. Pharm. Sci. 2010, 99, 2697. [53] M. Wilhelm, M. Neidho‥fer, S. Spiegel, Hans W. Spiess, Macromol. Chem. Phys. 1999, 200, 2205. [54] O. Gunter, Polyurethane Handbook, New York: Macmillen Publishing Co. Inc. 1985. [55] J. Blackwell, M. R. Nagarajan, T. B. Hoitink, The structure of the hard segments in MDI/diol/PTMA polyurethane elastomers, Washington DC: American Chemical Society 1981 [56] B. John, K. H. Gardner, Structure of the hard segments in polyurethane elastomers, IPC Business Press 1979. [57] T. Iwata, Y. Doi, Macromolecules 1998, 31, 2461 [58] Behl, M., Razzaq, M. Y., &Lendlein, A. (2010).Multifunctional shape-memory polymers.Advanced Materials, 22, 3388-3410. [59] Chen, Y., Liu, Y., Fan, H., Li, H., Shi, B., Zhou, H., &Peng, B. (2007). The polyurethane membranes with temperature sensitivity for water vapor permeation. Journal of Membrane Science, 287, 192-197. [60] Schild, H. G., &Tirrell, D. A. (1990).Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. The Journal of Chemical Physics, 94, 4352-4356. [61] Ding, X. M., Hu, J. L., Tao, X. M., & Hu, C.P. (2006). Preparation of temperature-sensitive polyurethanes for smart textiles. Textile Research Journal, 76, 406-413. [62] Zhou, H., Zeng, J., Fan, H., Liu, Y., & Zhou, J. (2010). Thermal sensitive polyurethane membranes with desirable switch temperatures. Macromolecular Research, 18, 1053-1059. [63] Tsao, C. T., Chang, C. H., Lin, Y. Y., Wu, M. F., Han, J. L., & Hsieh, K. H. (2011). Kinetic study of acid depolymerization of chitosan and effects of low molecular weight chitosan on erythrocyte rouleaux formation. Carbohydrate Research, 346, 94-102. [64] Heux, L., Brugnerotto, J., Desbrie‟res, J., Versali, M.-F., &Rinaudo, M. (2000).Solid state NMR for determination of degree of acetylation of chitin and chitosan.Biomacromolecules, 1, 746–751. [65] Hammouda, B., Ho, D. L., & Kline, S. (2004). Insight into clustering in poly(ethylene oxide) solutions. Macromolecules, 37, 6932-6937. [66] Kievit F. M., Veiseh O., Bhattarai N., Fang C., Gunn J. W., Lee D., Ellenbogen R. G. Olson J. M., & Zhang M. (2009). PEI–PEG–Chitosan-Copolymer-Coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Advanced Functional Materials, 19, 2244–2251. [67] Ichijo, H., Kishi, R., Hirasa, O., &Takiguchi, Y. (1994).Separation of organic substances with thermoresponsive polymer hydrogel. Polymer Gels and Networks, 2, 315-322. [68] Kumar, R., &Katare, O. P. (2005).Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review.AAPS PharmSciTech, 6, E298-E310. [69] Kasaai, M. R. (2010). Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: A review. Carbohydrate Polymers, 79, 801–810. [70] Morales, P. V., Nest, J. F. L. &Gandini, A. (1998). Polymer electrolytes derived from chitosan/polyether networks. ElectrochimicaActa, 43, 1275-1279. [71] Terbojevich, M., Carraro, C., Cosani, A. &Marsano, E. (1988). Solution studies of chitin-lithium chloride-N, N-dimethylacetamide system, Carbohydrate Research, 180, 73-86. [72] Chuang, C.Y., Don, T.M. & Chiu, W.Y. (2009a) Synthesis and Properties of Chitosan-Based Thermo- and pH-Responsive Nanoparticles and Application in Drug Release. J Polym Sci Pol Chem, 47, 2798-2810. [73] Hoffman, A.S., Ding, Z.L., Fong, R.B., Long, C.J. & Stayton, P.S. (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature, 411, 59-62. [74] Lendlein, A., Behl, M. & Razzaq, M.Y. (2010) Multifunctional Shape-Memory Polymers. Adv Mater, 22, 3388-3410. [75] Fernandez-Megia, E., Novoa-Carballal, R., Quinoa, E. & Riguera, R. (2005) Optimal routine conditions for the determination of the degree of acetylation of chitosan by H-1-NMR. Carbohyd Polym, 61, 155-161. [76] Chung, S.E. & Park, C.H. (2010) The Thermoresponsive Shape Memory Characteristics of Polyurethane Foam. J Appl Polym Sci, 117, 2265-2271. [77] Fan, H.J., Chen, Y., Liu, Y., Li, H., Shi, B., Zhou, H. & Peng, B.Y. (2007) The polyurethane membranes with temperature sensitivity for water vapor permeation. J Membrane Sci, 287, 192-197. [78] Joo, M.K., Park, M.H., Choi, B.G. & Jeong, B. (2009) Reverse thermogelling biodegradable polymer aqueous solutions. J Mater Chem, 19, 5891-5905. [79] Kasaai, M.R. (2010) Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: A review. Carbohyd Polym, 79, 801-810. [80] Chuang, C.Y., Don, T.M. & Chiu, W.Y. (2009b) Synthesis of Chitosan-Based Thermo- and pH-Responsive Porous Nanoparticles by Temperature-Dependent 82 Self-Assembly Method and Their Application in Drug Release. J Polym Sci Pol Chem, 47, 5126-5136 [81] Bhattarai, N., Gunn, J. & Zhang, M.Q. (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliver Rev, 62, 83-99. [82] Rinaudo, M. (2006) Chitin and chitosan: Properties and applications. Prog Polym Sci, 31, 603-632. [83] Chuang, C.Y., Don, T.M. & Chiu, W.Y. (2011) Preparation of environmental-responsive chitosan-based nanoparticles by self-assembly method. Carbohyd Polym, 84, 765-769. [84] Tang, Y.F., Du, Y.M., Hu, X.W., Shi, X.W. & Kennedy, J.F. (2007) Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohyd Polym, 67, 491-499. [85] Marra, K.G., Tan, H.P., Ramirez, C.M., Miljkovic, N., Li, H. & Rubin, J.P. (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 30, 6844-6853. [86] Lopez-Perez, P.M., da Silva, R.M.P., Pashkuleva, I., Parra, F., Reis, R.L. & San Roman, J. (2010) Hydrophobic-Electrostatic Balance Driving the LCST Offset Aggregation-Redissolution Behavior of N-Alkylacrylamide-Based Ionic Terpolymers. Langmuir, 26, 5934-5941. [87] Bhattarai, N., Ramay, H.R., Gunn, J., Matsen, F.A. & Zhang, M.Q. (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release, 103, 609-624. [88] Cavalla, D. (2001) Adaptations and innovations in drug delivery. Drug news & perspectives, 14, 495-499. [89] Abdekhodaie, M.J. & Ganji, F. (2008) Synthesis and characterization of a new 83 thermosensitive chitosan-PEG diblock copolymer. Carbohyd Polym, 74, 435-441. [90] Pielichowski, K. & Flejtuch, K. (2002) Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym Advan Technol, 13, 690-696. [91] Shantha, K.L. & Harding, D.R.K. (2002) Synthesis and characterisation of chemically modified chitosan microspheres. Carbohyd Polym, 48, 247-253. [92] Dal Pozzo, A., Vanini, L., Fagnoni, M., Guerrini, M., De Benedittis, A. & Muzzarelli, R.A.A. (2000) Preparation and characterization of poly(ethylene glycol)-crosslinked reacetylated chitosans. Carbohyd Polym, 42, 201-206. [93] Hammouda, B., Ho, D. & Kline, S. (2002) SANS from poly(ethylene oxide)/water systems. Macromolecules, 35, 8578-8585. [94] Kumar, M.N.V.R. (2000) A review of chitin and chitosan applications. React Funct Polym, 46, 1-27. [95] Schild, H.G. & Tirrell, D.A. (1990) Microcalorimetric Detection of Lower Critical Solution Temperatures in Aqueous Polymer-Solutions. J Phys Chem-Us, 94, 4352-4356. [96] Matyas, R., Selesovsky, J., Jalovy, Z. & Rohacova, J. (2011) Synthesis and Characterization of Polyethylene Glycol Dinitrates. Cent Eur J Energ Mat, 8, 145-155. [97] Zia, K.M., Barikani, M., Zuber, M., Bhatti, I.A. & Sheikh, M.A. (2008) Molecular engineering of chitin based polyurethane elastomers. Carbohyd Polym, 74, 149-158. [98] Barikani, M. & Mohammadi, M. (2007) Synthesis and characterization of starch-modified polyurethane. Carbohyd Polym, 68, 773-780. [99] Ding, X.M., Hu, J.L., Tao, X.M. & Hu, C.R. (2006) Preparation of temperature-sensitive polyurethanes for smart textiles. Text Res J, 76, 406-413. [100] Wang, Y.L., Li, Y.G., Luo, Y.F., Huang, M.N. & Liang, Z.Q. (2009) Synthesis and 84 characterization of a novel biodegradable thermoplastic shape memory polymer. Mater Lett, 63, 347-349. [101] Merline, J.D., Nair, C.P.R., Gouri, C., Bandyopadhyay, G.G. & Ninan, K.N. (2008) Polyether polyurethanes: Synthesis, characterization, and thermoresponsive shape memory properties. J Appl Polym Sci, 107, 4082-4092. [102] Hammouda, B., Ho, D.L. & Kline, S. (2004) Insight into clustering in poly(ethylene oxide) solutions. Macromolecules, 37, 6932-6937. [103] Kievit, F.M., Veiseh, O., Bhattarai, N., Fang, C., Gunn, J.W., Lee, D., Ellenbogen, R.G., Olson, J.M. & Zhang, M.Q. (2009) PEI-PEG-Chitosan-Copolymer-Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, Complexation, and Transfection. Adv Funct Mater, 19, 2244-2251. [104] Ichijo, H., Kishi, R., Hirasa, O. & Takiguchi, Y. (1994) Separation of Organic-Substances with Thermoresponsive Polymer Hydrogel. Polym Gels Netw, 2, 315-322. [105] Katare, O.P. & Kumar, R. (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review. Aaps Pharmscitech, 6. [106] Chen, S.-H., Tsao, C.-T., Chang, C.-H., Wu, Y.-M., Liu, Z.-W., Lin, C.-P., Wang, C.-K. & Hsieh, K.-H. (2012) Synthesis and characterization of thermal-responsive chitin-based polyurethane copolymer as a smart material. Carbohyd Polym. [107] Hsieh, K.H., Tsao, C.T., Chang, C.H., Lin, Y.Y., Wu, M.F. & Han, J.L. (2011) Kinetic study of acid depolymerization of chitosan and effects of low molecular weight chitosan on erythrocyte rouleaux formation. Carbohyd Res, 346, 94-102. [108] Jeong, B., Bae, Y.H., Lee, D.S. & Kim, S.W. (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature, 388, 860-862. 85 [109] Zia, K.M., Barikani, M., Khalid, A.M. & Honarkar, H. (2009) Surface characteristics of UV-irradiated chitin-based polyurethane elastomers. CarbohydPolym, 77, 621-627. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63321 | - |
| dc.description.abstract | 具生物相容性和生物降解性的功能性高分子被認為是在可分解塑膠中具潛力的選擇;然而,目前仍很少有相關的實用產品出現在生物醫藥和塑膠產業中。本論文研究重點著重在天然高分子的合成製備與其物理性質討論,尤其是甲殼素為主的多醣和聚乳酸所合成的功能性高分子材料。
在這項研究中,新的溫感型幾丁質基聚氨酯(TRCPUs)被設計出具有隨溫度變化的溶膠 - 凝膠轉變特性。這類的有機凝膠,由異佛爾酮二異氰酸酯(IPDI),聚乙二醇(PEG)和甲殼素所組成,在有機溶劑中具有隨溫度變化的溶膠 - 凝膠特性,由於其軟鍊段和硬鍊段之間的相互作用。在極性有機溶劑中聚乙二醇為主的TRCPUs軟鍊段具有熱黏彈性和親水性的特點。此外,在相同的製程中,類似TRCPUs有機凝膠被觀察其具有凝膠到固體轉變的特性,期轉變特性將進一步在此論文中討論。此含有甲殼素的凝膠共聚物是透過共價鍵結合的聚氨酯有機凝膠,在低溫注射中約在105°C時會有凝膠到固體轉變的特性。此TRCPUs的結構與熱行為由NMR,FTIR和DSC進行了鑑定,並討論其在有機溶劑中的流變行為。 另一方面,在這項研究中,我們提出了一個新的合成方法,創造新的聚氨酯,合成可生物降解的脂肪族聚酯,此材料具有良好的機械性能。乳酸(LA)和乙二醇(EG)聚合成聚(乳酸)多元二醇(PLA-OHS),此反應不使用催化劑直接在溶劑與起始劑直接進行縮聚反應。兩種不同的異氰酸酯,4,4 - 二苯基甲烷二異氰酸酯(MDI)與2,4 - 甲苯二異氰酸酯(TDI),被用來製備具適當的機械強度與可生物降解的聚乳酸材料。 1,4 - 丁二醇(BD)和三羥甲基丙烷(TMP)在反應過程中適度的添加以加強其機械強度,並延長聚乳酸聚胺酯的高分子鏈。其中以MDI二異氰酸酯系列中含20%的PBA擁有較好的機械性質,其機械性能明顯優於其他聚乳酸聚胺酯材料。其拉伸強度為46±1.7 MPa而斷裂伸長率是12±0.6%。降解研究結果顯示PLA - PU可以通過改變分子結構與改變環境控制達成生物降解的效果。 | zh_TW |
| dc.description.abstract | It is usually expected that the functional polymers with biocompatibility and biodegradability are the potential candidates in the category of application in compostable plastic industry; however, there are few practical products available on the biomedical and plastic markets. This dissertation was focused on the preparation of functional polymers from natural source and the discussion on their physical behaviors. Both of chitin base polysaccharide and polylactide were used to synthesis the functional polymer.
In this research, the new thermal-responsive chitin-based polyurethanes (TRCPUs) have been designed and developed that undergo a sol-to-gel transition with temperature changes. These TRCPUs organogel, composed of isophorone diisocyanate (IPDI), polyethylene glycol (PEG) and chitin, owned the ability to undergo temperature-dependent sol-to-gel transition in organic solvent due to the interaction between soft segments and hard segments. PEG dominated the soft segments of the TRCPUs and imparted the thermoelastomeric and hydrophilic characteristics to the TRCPUs in polar organic solvent. Furthermore, the similar TRCPUs organogel were synthesized in the same process while their gel-to-solid transition was observed and further discussed. Chitin was incorporated into polyurethane via covalent bonding; the resultant copolymer was an injectable organosol at low temperatures that transformed to a semisolid organogel at approximately 105°C. The TRCPUs were characterized by 1H-NMR, FT-IR and DSC, and the rheological behavior of the TRCPU solutions in organic solvents was studied. On the other hand, in this study, we propose a rational synthesis method to create novel poly(ester urethanes) that incorporate biodegradable aliphatic polyester and good mechanical properties of molecular weight advancement and cross-linked network formation. Lactic acid (LA) and ethylene glycol (EG) were polymerized to poly(lactic acid) diols (PLA-OHs) using the direct polycondensation without catalysts, solvent and initiators. Both 4,4-diphenylmethane diisocyanate (MDI) or toluene 2,4-diisocyanate (TDI), were applied to build biodegradable segmented PLA-PUs with appropriate mechanical strength. Appropriate amounts of 1,4-butanediol (BD) and trimethylolpropane (TMP) were added to improve the mechanical strength by extending the molecular chain of the PUs. Among the PLA-OHs, a PLA/PBA-PU of the MDI diisocyanate series with 20 wt%PBA displayed mechanical properties markedly superior to the other polymers. Its tensile strength was 46 ± 1.7 MPa and its elongation at break was 12 ± 0.6%. Results of the degradation study demonstrated that the recoverability of PLA-based PUs could be controlled by changing the molecular components and degradable environment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:34:47Z (GMT). No. of bitstreams: 1 ntu-101-D98549015-1.pdf: 3684689 bytes, checksum: b502578002cf047eab40f3c1724096cf (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III Acknowledgements V Contents VI List of figures IX List of tables XI Part 1 Introduction 1 1.1 Poly Lactic Acid 1 1.2 Polyurethane 4 1.3 Chitin 7 1.4 Chitosan 10 1.5 References 14 Part 2 Synthesis of Poly(lactic acid)-based polyurethane 17 2.1 Introduction 17 2.2 Experimental Section 20 2.2.1 Materials 20 2.2.2 Preparation of poly(lactic acid) diols (PLA-OHs) 20 2.2.3 Preparation of PLA-PUs, PLA/PTMG-PUs and PLA/PBA-PUs 22 2.3 Characterization of the PLA-OHs, PLA-PUs, PLA/PTMG-PUs and PLA/PBA-PUs 24 2.3.1 Molecular weights and polydispersities 24 2.3.2 Nuclear magnetic resonance (NMR) spectroscopy 24 2.3.3 Thermal properties 24 2.3.4 Mechanical properties 25 2.3.5 Hydrolytic degradation studies 25 2.3.6 Enzymatic degradation studies 25 2.3.7 Morphology 26 2.4 Results and discussion 27 2.4.1 Synthesis and characterization of PLA-OHs 27 2.4.2 Characterization of PLA-PUs, PLA/PTMG-PUs and PLA/PBA-PUs 29 2.4.3 Thermal properties 33 2.4.4 Mechanical properties 34 2.4.5 Hydrolytic and enzymatic degradation behavior 37 2.5 Conclusion 42 2.6 References 43 Part 3 Synthesis and characterization of thermal- responsive chitin-based polyurethane copolymer as a smart material 46 3.1 Introduction 46 3.2 Materials and Methods 49 3.2.1 TRCPUs synthesis 49 3.2.2 Characterization measurements 50 3.3 Results and discussion 52 3.4 Conclusion 58 3.5 Reference 59 Part 4 Synthesis and mechanical memory properties of thermo-responsive solid PEG-Chitin polyurethane 61 4.1 Introduction 61 4.2 Materials and Methods 66 4.2.1 Materials 66 4.2.2 Preparation of thermal responsive chitin based polyurethanes 66 4.3 Characterization of thermal responsive chitin based polyurethanes 68 4.3.1 Materials 68 4.3.2 Structure characterizations 68 4.3.3 Thermal analysis 69 4.3.4 Mechanical analysis 69 4.3.5 Morphology 70 4.4 Results and Discussion 70 4.4.1 Synthesis and Characterization 70 4.4.2 Therml analysis 73 4.4.3 Mechanical analysis 77 4.4.4 Morphology 78 4.5 Conclusion 81 4.6 References 82 Part 5 Conclusion 87 | |
| dc.language.iso | en | |
| dc.subject | 聚胺酯 | zh_TW |
| dc.subject | 聚乳酸 | zh_TW |
| dc.subject | 幾丁質 | zh_TW |
| dc.subject | chitin | en |
| dc.subject | polyurethane | en |
| dc.subject | Polylactic acid | en |
| dc.title | 聚乳酸與幾丁質合成功能性高分子材料之研究 | zh_TW |
| dc.title | Synthesis and Characterization of Poly Lactic Acid and Chitin as Functional Polymers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王志光,林江珍,邱文英,韓錦玲 | |
| dc.subject.keyword | 聚乳酸,幾丁質,聚胺酯, | zh_TW |
| dc.subject.keyword | Polylactic acid,chitin,polyurethane, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-11-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
