Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63291
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor石百達(Pai-Ta Shih)
dc.contributor.authorMing-Hsien Linen
dc.contributor.author林明賢zh_TW
dc.date.accessioned2021-06-16T16:33:04Z-
dc.date.available2013-01-16
dc.date.copyright2013-01-16
dc.date.issued2012
dc.date.submitted2012-11-30
dc.identifier.citation1. Boyle, P. P. & Tian, Y. S., 1999. Pricing lookback and barrier options under the CEV process. The Journal of Financial and Quantitative Analysis 34, 241-264.
2. Broadie, M., Jain, A., 2008. Pricing and hedging volatility derivatives. The Journal of Derivatives 15, 7-24.
3. Carr, P., Lee, R. 2009. Volatility derivatives. The Annual Review of Finance Economics 1, 1-21.
4. Carr, P., Lewis, K., 2007. Corridor variance swaps. Risk 17, 67-72.
5. Carr, P., Madan, D., 2002. Towards a theory of volatility trading. In R. Jarrow (Ed.) Volatility, Risk Publications, 417–427.
6. Christoffersen, P., Heston, S., Jacobs, K., 2009. The shape and term structure of the index option smirk: why multifactor stochastic volatility models work so well. Management Science 55, 1914-1932.
7. Daigler, R. T., Rossi, L., 2006. A portfolio of stocks and volatility. The Journal of Investing 15, 99-106.
8. Duffie, D., Pan, J., Singleton, K., 2000. Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343-1376.
9. Eraker, B., Johannes, M., Polson, N., 2003. The impact of jumps in volatility and returns. The Journal of Finance 58, 1269-1300.
10. Grunbichler, A. & Longstaff, F. A., 1996. Valuing futures and options on volatility. Journal of Banking and Finance 20, 985-1001.
11. Heston, S. L., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies 6, 327-343.
12. Li, C., 2010. Efficient valuation of options on VIX under Gatheral’s double log-normal stochastic volatility model: an asymptotic expansion approach. Working Paper, Departmant of Mathematics, Columbia University.
13. Lin, Y. N. & Chang, C. H., 2009. VIX option pricing. The Journal of Futures Markets 29, 523-543.
14. Liu, Q. ,2010. Optimal approximations of nonlinear payoffs in static replication. The Journal of Futures Markets 30, 1082-1099.
15. Szado, E., 2009. VIX futures and options- a case study of portfolio diversification during the 2008 financial crisis.
16. Whaley, R. E., 2000. The investor fear gauge. Journal of Portfolio Management, 26: 12-17.
17. Whaley, R. E.,2008. Understanding VIX. The Journal of Portfolio Management 35, 98-105.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63291-
dc.description.abstract本文提出一個新的VIX 選擇權評價近似方法。此方法結合Fourier-Stieltjes 轉換與指數逼近法,因此可以使用於任何變異數仿射模型與任意VIX 衍生性金融商品其收益函數只與到期日之變異數有關。本論文以Heston 模型為例,並與二項樹方法做比較。數值結果顯示考慮精確度與計算時間下,此方法明顯有效。此近似方法使用一段指數逼近時,誤差為2%;使用兩段時使用指數時,誤差降至0.3%;三段指數時,誤差降至0.04%。此外,此近似方法可以使用在其他的衍生性金融商品。舉例來說,複合選擇權與百慕達選擇權皆可藉此定價。zh_TW
dc.description.abstractThis study provides a new method to price the VIX option approximately. This method combines Fourier-Stieltjes transform andexponential approximation, so it can be used in any volatility affine models and any VIX derivatives with payoff function which is just dependent on the terminal state. In this paper, we take Heston model as
example and compare this method with the binominal tree method. The numerical results show that this method is more efficient than the tree method when we consider the accuracy and computation time. The error is about 2% with just one exponential approximation, 0.3% with two exponents, and 0.04% with three exponents. More usefully, this method can be extended to other derivatives. For example, compound options and Bermuda options can be priced in this method.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:33:04Z (GMT). No. of bitstreams: 1
ntu-101-R98723061-1.pdf: 448799 bytes, checksum: 88fd3c986c4638fcb4fe494cc084a76e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝………………………………………………………………………………. i
中文摘要………………………………………………………………………… ii
Abstract..…………………………………………………………………………. iii
Contents…………………………………………………………………………… iv
Chapter 1 Introduction………………..………………………………………. 1
Chapter 2 The valuation framework…………………………………………. 4
2.1 Stochastic volatility model……………………………………….. 4
2.2 VIX calculation…………………………………………………... 5
2.3 Asset pricing on affine model…………………………………..... 6
Chapter 3 VIX option valuation………………………………………………... 7
3.1 Pricing component options................................................................ 7
3.2 Exponential approximation……………………………...………… 9
3.3 Determining partition points……………………………………….. 12
Chapter 4 Numerical results……………………………………………….……. 14
Chapter 5 Further applications…………………………………………………. 16
5.1 Model generalization………………………………………………..16
5.2 Derivative generalization……………………………………………19
Chapter 6 Conclusion……………………………………………………………. 19
Reference…………………………………………………………………………… 21
Appendix.....................................................................................................................23
dc.language.isoen
dc.title變異數仿射模型下的VIX選擇權定價zh_TW
dc.titleVIX option pricing under volatility affine modelsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王耀輝,黃鴻明(Yaw-Huei Jeffrey Wang)
dc.subject.keywordVIX選擇權,Fourier-Stieltjes 轉換,仿射模型,zh_TW
dc.subject.keywordVIX option,Fourier-Stieltjes transform,affine model,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2012-12-03
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
438.28 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved