Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63277
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶源
dc.contributor.authorSheng-Wei Chiangen
dc.contributor.author江勝偉zh_TW
dc.date.accessioned2021-06-16T16:32:14Z-
dc.date.available2018-01-16
dc.date.copyright2013-01-16
dc.date.issued2012
dc.date.submitted2012-12-06
dc.identifier.citationBerdinsky, A. S., Chadderton, L. T., Yoo, J. B., Gutakovsky, A. K., Fedorov, V. E., Mazalov, L. N. and Fink, D. (2005). 'Structural changes of MoS2 nano-powder in dependence on the annealing temperature.' Applied Physics A: Materials secience & processing 80(1): 61-67.
Beretta, A., Sun, Q., Herman, R. G. and Klier, K. (1995). 'Synthesis of 2-methylpropan-1-methanol mixtures from H2-CO synthesis gas over double-bed Cs/Cu/ZnO/Cr2O3 and Cs/ZnO/Cr2O3 catalysts.' Journal of the Chemical Society-Chemical Communications(24): 2525-2526.
Bowker, M. (1992). 'On the mechanism of ethanol synthesis on Rhodium.' Catalysis Today 15(1): 77-100.
Burch, R. and Hayes, M. J. (1997). 'The preparation and characterisation of Fe-promoted Al2O3-supported Rh catalysts for the selective production of ethanol from syngas.' Journal of Catalysis 165(2): 249-261.
Burch, R. and Petch, M. I. (1992). 'Investigation of the reactions of acetaldehyde on promoted rhodium catalysts ' Applied Catalysis a-General 88(1): 61-76.
Cleveland, C. J., Hall, C. A. S. and Herendeen, R. A. (2006). 'Energy returns on ethanol production.' Science 312(5781): 1746-1746.
Coal Industry Advisory Board Workshop (CIAB), (2006). Workshop report. Paris.
Deluga, G. A., Salge, J. R., Schmidt, L. D. and Verykios, X. E. (2004). 'Renewable hydrogen from ethanol by autothermal reforming.' Science 303(5660): 993-997.
Dong, Y. J. and Steinberg, M. (1997). 'Hynol - An economical process for methanol production from biomass and natural gas with reduced CO2 emission.' International Journal of Hydrogen Energy 22(10-11): 971-977.
Egbebi, A. and Spivey, J. J. (2008). 'Effect of H2/CO ratio and temperature on methane selectivity in the synthesis of ethanol on Rh-based catalysts.' Catalysis Communications 9(14): 2308-2311.
Energy Information Adiministration (EIA), (2009). 'International Energy Outlook.' U.S. Department of Energy: Washington, DC.
Epling, W. S., Hoflund, G. B. and Minahan, D. M. (1997). 'Study of Cs-Promoted, α-Alumina-Supported Silver, Ethylene-Epoxidation Catalysts.' Journal of Catalysis 171(2): 490-497.
Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O'Hare, M. and Kammen, D. M. (2006). 'Ethanol can contribute to energy and environmental goals.' Science 311(5760): 506-508.
Fougret, C. M. and Holderich, W. F. (2001). 'Ethylene hydration over metal phosphates impregnated with phosphoric acid.' Applied Catalysis A: General 207(1-2): 295-301.
Gary, K. A., Zhao, L. and Emptage, M. (2006). 'Bioethanol.' Current Opinion in Chemical Biology 10: 141-146.
Haider, M. A., Gogate, M. R. and Davis, R. J. (2009). 'Fe-promotion of supported Rh catalysts for direct conversion of syngas to ethanol.' Journal of Catalysis 261(1): 9-16.
Hamada, H., Kuwahara, Y., Kintaichi, Y., Ito, T., Wakabayashi, K., Iijima, H. and Sano, K. (1984). 'Selective synthesis of C-2-oxygenated compounds from synthesis gas over Ir-Ru bimetallic catalysts.' Chemistry Letters(9): 1611-1612.
Holtzapple, M. T., Davison, R. R., Ross, M. K., Aldrett-Lee, S., Adelson, S., William Kaar, W., Gaskin, D., Shirage, H., Chang, N., Chang, V. S. and Loescher, M. E. (1999). 'Biomass conversion to mixed alcohol fuels using the MixAlco process.' Applied Biochemistry and Biotechnology 79(1-3): 609-631.
Hu, J., Wang, Y., Cao, C., Elliott, D. C., Stevens, D. J. and White, J. F. (2007). 'Conversion of biomass-derived syngas to alcohols and C2 oxygenates using supported Rh catalysts in a microchannel reactor.' Catalysis Today 120(1): 90-95.
Huber, G. W., Chheda, J. N., Barrett, C. J. and Dumesic, J. A. (2005). 'Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates.' Science 308(5727): 1446-1450.
Hussain, S. T., Nadeem, M. A. and Mazhar, M. (2008). 'Effect of potassium addition on the product selectivity of Ru:Mn/alumina supported catalyst system for Fischer-Tropsch reaction.' Catalysis Communications 9(10): 2048-2052.
Jiang, M., Bian, G.-Z. and Fu, Y.-L. (1994). 'Effect of the K-Mo interaction in K-MoO3/γ-Al2O3 catalysts on the properties for alcohol synthesis from syngas.' Journal of Catalysis 146(1): 144-154.
Kiennemann, A., Diagne, C., Hindermann, J. P., Chaumette, P. and Courty, P. (1989). 'Higher alcohols synthesis from CO+2H2 on cobalt catalyst- use of probe molecules and chemical trapping in the study of the reaction-mechanism.' Applied Catalysis 53(2-3): 197-216.
Koonin, S. E. (2006). 'Getting serious about biofuels.' Science 311(5760): 435-435.
Li, D. B., Yang, C., Qi, H. J., Zhang, H. R., Li, W. H., Sun, Y. H. and Zhong, B. (2004). 'Higher alcohol synthesis over a La promoted Ni/K2CO3/MoS2 catalyst.' Catalysis Communications 5(10): 605-609.
Li, D. B., Zhao, N., Qi, H. J., Li, W. H., Sun, Y. H. and Zhong, B. (2005). 'Ultrasonic preparation of Ni modified K2CO3/MoS2 catalyst for higher alcohols synthesis.' Catalysis Communications 6(10): 674-678.
Li, X. G., Feng, L. J., Liu, Z. Y., Zhong, B., Dadyburjor, D. B. and Kugler, E. L. (1998). 'Higher alcohols from synthesis gas using carbon-supported doped molybdenum-based catalysts.' Industrial & Engineering Chemistry Research 37(10): 3853-3863.
Li, Z. R., Fu, Y. L. and Jiang, M. (1999). 'Structures and performance of Rh-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas.' Applied Catalysis a-General 187(2): 187-198.
Lu, Y., Yu, F., Hua, J. and Liu, J. (2012). 'Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst.' Applied Catalysis A: General 429-430(2): 48-58.
Luo, H. Y., Lin, P. Z., Xie, S. B., Zhou, H. W., Xu, C. H., Huang, S. Y., Lin, L. W., Liang, D. B., Yin, P. L. and Xin, Q. (1997). 'The role of Mn and Li promoters in supported rhodium catalysts in the formation of acetic acid and acetaldehyde.' Journal of Molecular Catalysis a-Chemical 122(2-3): 115-123.
Luo, H. Y., Zhang, W., Zhou, H. W., Huang, S. Y., Lin, P. Z., Ding, Y. J. and Lin, L. W. (2001). 'A study of Rh-Sm-V/SiO2 catalysts for the preparation of C2-oxygenates from syngas.' Applied Catalysis A: General 214(2): 161-166.
Luo, H. Y., Zhou, H. W., Lin, L. W., Liang, D. B., Li, C., Fu, D. and Xin, Q. (1994). 'Role of vanadium promoter in Rh-V-SiO2 catalysts for the synthesis of C-2-oxygenates from syngas.' Journal of Catalysis 145(1): 232-234.
Ma, C. H., Li, H. Y., Lin, G. D. and Zhang, H. B. (2010). 'MWCNT-Supported Ni-Mo-K Catalyst for Higher Alcohol Synthesis from Syngas.' Catalysis Letters 137(3-4): 171-179.
Mazzocchia, C., Gronchi, P., Kaddouri, A., Tempesti, E., Zanderighi, L. and Kiennemann, A. (2001). 'Hydrogenation of CO over Rh/SiO2-CeO2 catalysts: kinetic evidences.' Journal of Molecular Catalysis a-Chemical 165(1-2): 219-230.
Mysov, V. M., Reshetnikov, S. I., Stepanov, V. G. and Ione, K. G. (2005). 'Synthesis gas conversion into hydrocarbons (gasoline range) over bifunctional zeolite-containing catalyst: experimental study and mathematical modelling.' Chemical Engineering Journal 107(1-3): 63-71.
Oshikawa, K., Nagai, M. and Omi, S. (2001). 'Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS.' Journal of Physical Chemistry B 105(38): 9124-9131.
Peluso, E., Galarraga, C. and de Lasa, H. (2001). 'Eggshell catalyst in Fischer–Tropsch synthesis: Intrinsic reaction kinetics.' Chemical Engineering Science 55(5): 1239-1245.
Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R. and Tschaplinski, T. (2006). 'The path forward for biofuels and biomaterials.' Science 311(5760): 484-489.
Roman-Leshkov, Y., Barrett, C. J., Liu, Z. Y. and Dumesic, J. A. (2007). 'Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.' Nature 447(7147): 982-U985.
Rostrup-Nielsen, J. R. (2005). 'Making Fuels from Biomass.' Science 308: 1421.
Sawyer, C. N., McCarty, P. L. and Parkin, G. F. (2002). Chemistry for Environmental Engineering and Science, Mc Graw Hill.
Slaa, J. C., Vanommen, J. G. and Ross, J. R. H. (1992). 'The synthesis of higher alcohols using modified Cu/ZnO/Al2O3 catalysts ' Catalysis Today 15(1): 129-148.
Spivey, J. J. and Egbebi, A. (2007). 'Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas.' Chemical Society Reviews 36(9): 1514-1528.
Subramani, V. and Gangwal, S. K. (2008). 'A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol.' Energy & Fuels 22(2): 814-839.
Subramanian, N. D., Gao, J., Mo, X. H., Goodwin, J. G., Torres, W. and Spivey, J. J. (2010). 'La and/or V oxide promoted Rh/SiO2 catalysts: Effect of temperature, H2/CO ratio, space velocity, and pressure on ethanol selectivity from syngas.' Journal of Catalysis 272(2): 204-209.
von Blottnitz, H. and Curran, M. A. (2007). 'A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective.' Journal of Cleaner Production 15(7): 607-619.
Wesseler, J. (2007). 'Opportunities (costs) matter: A comment on Pimentel and Patzek 'Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower'.' Energy Policy 35(2): 1414-1416.
Wey, K. D., Hong, S. C. and Wu, M. D. (2008). 'Bio-Diesel versus Solid Refuse Derived Fuel- Cost-Benefit Analysis.' Socioeconomic Law and Institution Review 42: 67- 84.
Winter, C. L. (1986). 'Make ethanol via syngas.' Hydrocarbon Processing 65(4): 71-73.
Woo, H. C., Park, T. Y., Kim, Y. G., Nam, I. S., Lee, J. S. and Chung, J. S. (1993). 'Alkali-promoted MoS2 catalysts for alcohol synthesis- the effect of alkali promotion and preparation condition on activity and selectivity.' New Frontiers in Catalysis, Pt C 75: 2749-2752.
Wu, P. Y., Ji, S. F., Hu, L. H., Zhu, J. Q. and Li, C. Y. (2008). 'Preparation, characterization, and catalytic properties of the Mo2C/SBA-15 catalysts.' Journal of Porous Materials 15(2): 181-187.
Xiang, M., Li, D., Li, W., Zhong, B. and Sun, Y. (2006). 'Performances of mixed alcohols synthesis over potassium promoted molybdenum carbides.' Fuel 85(17-18): 2662-2665.
Xiang, M., Li, D., Li, W., Zhong, B. and Sun, Y. (2007, a). 'K/Fe/β-Mo2C: A novel catalyst for mixed alcohols synthesis from carbon monoxide hydrogenation.' Catalysis Communications 8(1): 88-90.
Xiang, M., Li, D., Li, W., Zhong, B. and Sun, Y. (2007, b). 'Synthesis of higher alcohols from syngas over K/Co/β-Mo2C catalysts.' Catalysis Communications 8(3): 503-507.
Xiang, M., Li, D., Li, W., Zhong, B. and Sun, Y. (2007, c). 'Potassium and nickel doped β-Mo2C catalysts for mixed alcohols synthesis via syngas.' Catalysis Communications 8(3): 513-518.
Xiang, M., Li, D., Qi, H., Li, W., Zhong, B. and Sun, Y. (2007, d). 'Mixed alcohols synthesis from carbon monoxide hydrogenation over potassium promoted β-Mo2C catalysts.' Fuel 86(9): 1298-1303.
Xiang, M., Li, D., Xiao, H., Zhang, J., Li, W., Zhong, B. and Sun, Y. (2008). 'K/Ni/β-Mo2C: A highly active and selective catalyst for higher alcohols synthesis from CO hydrogenation.' Catalysis Today 131(1-4): 489-495.
Ye, L., Wu , C., Guo, W. and Xie, Y. (2006). 'MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties.' Chemical Communications(45): 4738-4740.
Zimmerman, W. H., Campbell, C. N. and Kuester, J. L. (1986). 'Catalytic conversion of biomass derived synthesis gas diesel fuel in a slurry reactor.' Abstracts of Papers of the American Chemical Society 192: 116-123.
吳耿東 and 李宏台 (2004). '生質能源- 化腐朽為能源.' 科學發展 383.
徐光蓉 (2007). '抗暖手冊.' 5.
經濟部能源局 (2009). 'E3酒精汽油公務車輛先行計畫.' 能源政策與措施.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63277-
dc.description.abstract本研究利用鉬基(Mo-based) 觸媒針對合成氣進行轉化。研究中以氧化鋁(gama-alumina, γ-Al2O3)為載體,於還原狀態下將Mo-based觸媒以硫化氫(hydrogen sulfide, H2S) 硫化為硫化鉬(molybdenum disulfide, MoS2),使成為MoS2/γ-Al2O3觸媒;亦以分子篩(Zeolite Socony Mobil – 5, ZSM-5) 做為觸媒載體,並於還原狀態下將Mo-based 觸媒以甲烷(methane, CH4) 碳化為碳化鉬(bata-molybdenum carbide, β-Mo2C),使成為β-Mo2C/ZSM-5觸媒。應用此等觸媒探討不同反應狀態下觸媒對合成氣轉化效率之影響。 此外,本研究進一步選擇以鹼金族-鉀(potassium, K)及過渡金屬-釩(vanadium, V) 做為觸媒改質劑,將已合成之β-Mo2C/ZSM-5觸媒表面改質,探討對合成氣轉化率(XCO)及產物(如:烷類或醇類(alcohol, AOH)特別是乙醇(EtOH))產率(yield, Y)及選擇率(selectivity, S)之影響。
以MoS2做為催化劑,分別於不同反應溫度(T)、合成氣進料mole比(H2/CO)、進氣流量(QG)及設定壓力(PST)之條件下,探討MoS2觸媒對於合成氣轉製醇類之催化效能。 結果顯示T = 523 K為使用MoS2觸媒作為催化劑時較適之反應溫度,配合H2/CO = 2以及較低之QG (300 cm3 min-1)和較高之PST (540 psig)可得到可接受度高之合成氣轉製效能(XCO = 9.6%,醇類產率(YAOH) = 9.6%,醇類選擇率(SAOH) = 65.9%)。 此外,當停留時間較短時(< 3.5 sec),其合成氣轉化反應對於CO之反應階數n = 0、1或2之XCO幾乎無差異皆符合線性分佈(r2 = 0.938,0.945及0.951);而當停留時間延長時(~40 sec),反應階數n = 0、1或2之XCO即呈現明顯差異。此顯示反應在停留時間較短時,可簡化其反應階數為n = 0,可有利闡釋其反應機制。
以β-Mo2C做為反應系統之催化劑,配合同為Mo-based之MoS2之實驗結果,可知MoS2觸媒之XCO (0.6 - 9.6%)遠低於β-Mo2C觸媒(XCO = 10.6 - 22.4%)。其中合成氣於β-Mo2C觸媒轉製反應下,以T = 573 K時可獲得可接受度高之結果(XCO = 17.3%, YAOH = 4.7%)。而以K以及V 對β-Mo2C觸媒進行改質後,於K/Mo = 0.52及V/Mo = 0.049時,其觸媒可明顯提升合成氣轉化反應之XCO (28.8 及 26.2%)以及YAOH (18.1 及 12.0%)。 進一步以K及V同時對β-Mo2C觸媒表面改質為V-K-Mo2C觸媒進行合成氣轉化,可得到較K-Mo2C及V-Mo2C觸媒提升之結果,當V/K/Mo = 0.1/1/2時,且其主要生成產物為EtOH,其XCO = 35.1%,YAOH = 25.4%,SEtOH = 39.9%。
針對V-K-Mo2C觸媒轉製合成氣之特性,本研究進一步探討於催化系統添加水份之影響,由研究結果可知其XCO = 35.7%及YAOH = 26.8%皆獲得提升。而受到來自於添加水份所提供之H及O原子,以至於提升轉化程序中較高碳數之醇類生成,而使得EtOH於產物比例上降低,其SEtOH = 35.8%。
由Anderson-Schulz-Flory (ASF)產物分佈(mole分率(Mn) vs.碳數(n))分析,可知β-Mo2C觸媒之產物無論是烷類或是醇類,皆是以線性分佈為主;而K-Mo2C、V-Mo2C及V-K-Mo2C觸媒之產物,則僅有烷類仍維持線性分佈,而醇類之ASF分佈於C1 (甲醇,MeOH)處發生明顯偏移。結果顯示經改質後之β-Mo2C觸媒,對於催化生成醇類的機制上發生了變化,且C1與C2-C4存在不同之反應機制,以至於發生此偏移。
zh_TW
dc.description.abstractEffects of reaction conditions on the production of alcohols (AOHs) and alkanes (Alk) from CO and H2, which can be obtained from the gasification of biomass, using molybdenum (Mo) based catalysts such as molybdenum sulfide (MoS2), molybdenum carbides (β-Mo2C) and potassium and vanadium modified β-Mo2C of K-Mo2C, V-Mo2C and V-K-Mo2C were studied. A high-pressure fixed packed bed (HPFPB) was employed to carry out the reaction. The results indicate that the conversion of CO (XCO, in C%) and specific production rates of alcohol (SPRAOH) and alkane (SPRAlk) (g h-1 gcat-1) are highly dependent on temperature (T).
In T = 423–573 K, maximum yield of alcohols (YAOH, in C%) of 5.0% and SPRAOH of 7.9 mg h-1 gcat-1 occur at T = 523 K over MoS2 catalyst. In the meantime, well performance gives the selectivity of ethanol (SEtOH) of 52.0 C%. For the studies on varying H2/CO mole ratio (MH/C) from 1 to 4 at 523 K, the appropriate MH/C to produce EtOH is 2, giving higher ratios of SPRAOH/SPRAlk of 2.08 and YAOH/YAlk of 2.50 than those with other MH/C. As for varying the total gas flow rates (QG) of 300, 450, 600 to 900 cm3 min−1 tested at T = 523 K and MH/C = 2, the lower QG provides longer reaction time (or gaseous retention time, tR) thus offering higher XCO, however lower productivity. For setting pressure (PST) = 225–540 psi, a supply of higher pressure is equivalent to providing a larger amount of reactants into the reaction system. This thus suggests that the use of higher PST whould give both higher XCO and productivity.
Effects of modification of β-Mo2C catalyst using potassium (K) and vanadium (V) on AOHs and Alks from the hydrogenation of CO were studied. Both K and V promoters show the effectiveness on the XCO, SPRAOH, (g gcat-1 h-1), and SAOH (in C%). At the K/Mo weight ratio of 0.52, the contributions of XCO and YAOH are as high as 28.8% and 18.1%, respectively. At the V/Mo weight ratio of 0.049, the XCO and YAOH are 26.2 and 12.0%, respectively. The corresponding XCO and YAOH for the case using β-Mo2C are 21.5% and 6.6%, respectively. The comparison indicates that both K and V are promoters for enhancing the XCO and YAOH, with K exhibiting more vigorous effect. The V-K co-modified β-Mo2C catalyst with V/K/Mo = 0.1/1/2 gives XCO of 35.1% and YAOH of 25.4% with SEtOH as high as 39.9%. The results reveal the synergistic enhancement of K and V on the XCO and YAOH, especially on the SEtOH.
The presence of water induces the water-gas shift reaction (WGS) of CO which further contributes the formation of reactive radicals, thus enhancing the yields of alcohols. The XCO and YAOH can reach as high as 35.7% and 26.8%. The SEtOH may be retained at satisfactory value of 35.79%. Some ethanols are converted to higher alcohols of propanol and butanol due to the presence of H2O which contains H and O.
The deviation of methanol (MeOH) from the linear Anderson-Schulz-Flory (ASF) distribution for the cases using K-Mo2C, V-Mo2C and V-K-Mo2C catalysts indicates that the reaction mechanisms of the chain-propagation of alcohols are different from those using sole β-Mo2C. This may be due to the functions of V or/and K on the mechanisms, such as the insertion and re-adsorption. For the alkanes, the ASF distributions are linear for the un-modified and modified β-Mo2C catalysts, revealing that reaction mechanisms of alkanes are not altered by the K and V added on the catalysts.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:32:14Z (GMT). No. of bitstreams: 1
ntu-101-D96541003-1.pdf: 12436896 bytes, checksum: 1cc17f3751d85b68589e37e33f9ef160 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
Nomenclature xiii
一、前言 1
1.1 研究緣起 1
1.2 研究目的 4
二、研究背景及文獻探討 7
2.1 合成氣轉製技術發展 7
2.2 生質物轉製燃料 12
2.3 合成氣轉製燃料之反應機制 14
2.4 合成氣轉製燃料之反應條件 17
2.5 合成氣於觸媒表面之反應 25
2.6 合成氣產製燃料(醇類)用觸媒之選擇 27
2.7 過渡金屬元素觸媒之改質 31
2.8 H2O添加對合成氣轉化之影響 32
2.9 碳鏈增長特徵係數 37
2.10 合成氣產製生質酒精之經濟效益 41
三、研究方法 47
3.1 研究架構 47
3.2實驗藥品與材料 49
3.3觸媒之製備與特性分析 50
3.4觸媒合成設備與分析方法 52
3.4-1 觸媒合成設備 52
3.4-2氣相層析儀-熱傳導偵測器(GC-TCD, China Chromatography 8900) 53
3.4-3簡易氣相層析儀-熱傳導偵測器(GC-TCD, China Chromatography Personal 1000) 54
3.4-4氣相層析儀-火焰離子偵測器(GC-FID) 55
3.4-5溫度計 58
3.5其他分析儀器設備 59
3.6標準品來源及配製 60
3.6-1氣體標準品 60
3.6-2液體標準品 61
3.6-3檢量線製作 61
3.7 數據解析 62
3.8 高溫高壓反應實驗設備 63
四、結果與討論 67
4.1 觸媒特性分析 67
4.1-1 觸媒顆粒特性 67
4.1-2 SEM掃瞄圖像 71
4.1-3 XRD 繞射定性分析 74
4.2 MoS2觸媒催化反應 77
4.2-1 溫度(T)對MoS2觸媒催化效果之影響 77
4.2-2 原料mole比(H2/CO)對MoS2觸媒催化效果之影響 81
4.2-3 氣體流量(QG)對MoS2觸媒催化效果之影響 84
4.2-4 反應壓力(PST)對MoS2觸媒催化效果之影響 87
4.3 Mo2C觸媒催化反應 90
4.4 K-Mo2C觸媒催化反應 94
4.5 V-Mo2C觸媒催化反應 97
4.6 V-K-Mo2C觸媒催化反應 100
4.7 Mo2C觸媒催化反應產物選擇性特徵 104
4.8 K-Mo2C及V-Mo2C觸媒催化反應產物選擇性特徵 106
4.9 A-S-F分析-合成氣轉化產物生成分佈特性 109
五、結論與建議 113
5.1 結論 113
5.2 建議 114
參考文獻 117
附錄 A. 方法偵測極限 A-1
附錄 B. 檢量線 B-1
附錄 C. 原始數據 C-1
附錄D. 氧化環境對合成氣轉製之影響 D-1
dc.language.isozh-TW
dc.title以表面改質鉬基觸媒由合成氣產製烷類及醇類之研究zh_TW
dc.titleProduction of alkanes and alcohols from syngas over modified Mo-based catalystsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee朱義旭,章裕民,陳嘉明,李公哲
dc.subject.keyword合成氣,一氧化碳氫化,醇類合成,烷類合成,硫化鉬,碳化鉬,觸媒表面改質,鉀,釩,zh_TW
dc.subject.keywordSyngas,Hydrogenation of CO,Alcohol synthesis,Alkane synthesis,Molybdenum sulfide,Molybdenum carbides,Potassium promoter,Vanadium promoter,en
dc.relation.page176
dc.rights.note有償授權
dc.date.accepted2012-12-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
12.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved