Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63269
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisorChuin Shan Chen(Chuin Shan Chen)
dc.contributor.authorJeremy Soetarmanen
dc.contributor.author杰洛zh_TW
dc.date.accessioned2021-06-16T16:31:46Z-
dc.date.available2013-01-16
dc.date.copyright2013-01-16
dc.date.issued2012
dc.date.submitted2012-12-10
dc.identifier.citationREFERENCES
[1] Munson, Young, Okiishi, Huebsch; Fundamentals of Fluid Mechanics; Sixth Edition; John Wiley & Sons, 2010
[2] American Society of Civil Engineers, ASCE7-10 Minimum Design Loads of Buildings and Other Structures
[3] nVidia PhysX 3.1 SDK Documentation, released October 2011
[4] DoBois, Paul; MySQL Developer’s Library, Fourth Edition, Addision Wesley, 2009
[5] Ivor Horton’s, Beginning Visual C++ 2010, Wrox
[6] BjarneStroustrup, The C++ Programming Language, Third edition
[7] Wright, Haemel, Seller,Lipchak, OpenGL SuperBible, Fifth Edition, 2007
[8] Halliday, Resnick, and Walker, Fundamentals of Physics, 8th edition, Wiley, 2008
[9] NVIDIA CUDA C Programming Guide Version 4.0
[10] C. L. Fu, S. M. Lee, C. M. Cheng, Validation of CFD simulations on the wind loads for tall buildings’ preliminary design , The Fourth International Symposium on Computational Wind Engineering, 2006
[11] Girma Bitsuamlak, Emil Simiu, CFD's potential applications: a wind engineering perspective, The Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA May 23-27, 2010
[12] Dagnew, A.K., Bitsuamalk, G.T., Ryan, M. “Computational evaluation of wind pressures on tall buildings”, 11th Americas Conference of Wind Engineering, June 22-26, San Juan, Puerto Rico, 2009
[13] Jin-Shian Lin, Cheng-Hsin Chang, Neng-Chou Shang, “Computational Simulation and Comparison of the Effect of Different Surroundings on Wind Loads on Domed Structures”, Tamkang Journal of Science and Engineering, Vol. 9, No 3, pp. 291297 (2006)
[14] Ehsan Vafaeihosseini, Azadeh Sagheb, Pradeep Kumar Ramancharla, “Analysis of Highrise Building using Computational Fluid Dynamics Approach: A Case Study on 38-Storey Highrise Building”, Structural Engineering World Congress (2011)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63269-
dc.description.abstractIn designing structures, civil / structural engineers need to make sure that the structure will be able to withstand major loading that will happened during the service life of the structure, either due to static / dead loading as well as live loading. On live loading, this kind of loading can due to occupancy of structures, earthquake, wind, machine loading, etc.
Up to now, there are some well-known and acceptable methods to approximate wind loading on structures, they are: (1) the approximating wind loading equations provided at many building codes, (2) wind tunnel simulation testing for relatively complex or uncommon structures, (3) CFD (Computational Fluid Dynamics) simulation.
Here in this thesis we consider another possibility of approximating wind loading on structures, that is using physics engine, and in this thesis we consider particularly PhysX physics engine. The PhysX Physics Engine used in this research work is the PhysX version 3.1, and the work will be based on the PhysX 3.1 SDK [3].
For doing so, we consider how well PhysX physics engine simulate wind loading on simple objects, and here in this research we consider simulation of wind loading on a cylinder shaped structure as well as box shaped structure, both of them having diameter / side dimension of 10 meters.
As the framework of the simulation, we create a virtual wind tunnel having dimension of 40 meter by 40 meter for the cross section, and having length of 120 meters, and the number of particles used for simulating wind loading on these two simple structures are one million particles.
While PhysX can make use of CPU or GPU (currently only NVidia GPUs are supported by NVidia) for computing power resources, due to higher computational performance of GPU compared to CPU, in this research we make use of GPU as the computational resource, and the GPU used in this simulation is a notebook-based GPU, the nVidia GT 240M, with memory of 1GB.
We investigate how well the PhysX physics engine is to simulate the real world condition approximated by either fluid mechanics or Building Code. We found out that PhysX is capable of predicting wind loading on structure quite satisfactorily.
We wish that this research result will be beneficial in considering how physics engine, particularly PhysX can be considered for a method in approximating wind loading on structures, and its usability in civil engineering.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:31:46Z (GMT). No. of bitstreams: 1
ntu-101-R98521613-1.pdf: 4733675 bytes, checksum: 9cccf4a4b4be33d31a5707c90fc5d8b7 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsFIGURE LIST 5
TABLE LIST 8
ABSTRACT 9
CHAPTER 1 - INTRODUCTION 10
1.1 RESEARCH OBJECTIVES 10
1.2 OPTIONS OF USING PHYSICS ENGINE FOR WIND LOADING CALCULATION AND SIMULATION 11
1.3 PHYSICS ENGINE VERSION AND DESCRIPTION 12
CHAPTER 2 – SPH BASIC THEORY AND PHYSX SIMULATION DESCRIPTION 13
2.1 BASIC THEORY OF SPH 13
2.2 PREVIOUS WORK 15
2.2 PHYSX SIMULATION RELATED FEATURES 16
2.3 PHYSX ENVIRONMENT SETUP 18
2.3.1 WIND TUNNEL CREATION 18
2.3.1. WIND / FLUID CREATION 23
2.3.4 STRUCTURAL MODEL CREATION AND SETUP 26
CHAPTER 3 – VERIFICATION WITH FLUID DYNAMICS EQUATIONS 30
3.1 COMPARISON BACKGROUND 30
3.2 FLUID MECHANICS CALCULATION 30
3.2.1 FLUID PROPERTIES 30
3.2.2 REYNOLDS NUMBER DEFINITION AND CALCULATION 30
3.2.3 DRAG FORCE SOURCE CONTRIBUTION 31
3.2.4 DRAG FORCE CALCULATION 34
3.3 PHYSX SIMULATION AND RESULTS 35
3.3.1 THE FIRST SIMULATION ENVIRONMENT (TIME STEP OF 1/2000 SECOND AND COUNTER FORCE INCREMENT OF 500 NEWTON) 37
3.3.2 THE SECOND SIMULATION ENVIRONMENT (TIME STEP OF 1/2000 SECOND AND COUNTER FORCE INCREMENT OF 1000 NEWTON) 41
3.3.3 THE THIRD SIMULATION ENVIRONMENT (TIME STEP OF 1/1000 SECOND AND COUNTER FORCE INCREMENT OF 500 NEWTON) 45
3.3.4 THE FOURTH SIMULATION ENVIRONMENT (TIME STEP OF 1/1000 SECOND AND COUNTER FORCE INCREMENT OF 1000 NEWTON) 48
3.3.5 RESULT COMPARISON OF SIMULATING BY FOUR DIFFERENT SIMULATION PARAMETERS 52
3.4 PHYSX AND FLUID MECHANICS COMPARISON CONCLUSION 54
CHAPTER 4 – PHYSX SIMULATION RESULT AND BUILDING CODE VERIFICATION 55
4.1 INTRODUCTION 55
4.2 PHYSX SIMULATION RESULT 55
4.2.1 THE FIRST SIMULATION PARAMETERS (TIME STEP OF 1/2000 SECOND AND COUNTER FORCE INCREMENT OF 500 NEWTON) 56
4.2.2 THE SECOND SIMULATION PARAMETERS (TIME STEP OF 1/2000 SECOND AND COUNTER FORCE INCREMENT OF 1000 NEWTON) 59
4.2.3 THE THIRD SIMULATION PARAMETER (TIME STEP OF 1/1000 SECOND AND COUNTER FORCE INCREMENT OF 500 NEWTON) 63
4.2.4 THE FOURTH SIMULATION PARAMETER (TIME STEP OF 1/1000 SECOND AND COUNTER FORCE INCREMENT OF 1000 NEWTON) 68
4.3 DRAG FORCE ON BOX ACCORDING TO FLUID MECHANICS CALCULATION 73
4.3.1 GENERALS 73
4.3.2 CALCULATION FOR SECOND CASE BOUNDARY (DRAG COEFFICIENT = 1.05) 75
4.4 BUILDING CODE (ASCE7-10) CALCULATION 76
CHAPTER 5 – CONCLUSION 93
5.1 SUMMARY 93
5.2 FUTURE WORKS 94
REFERENCES 95
APPENDIX 97
APPENDIX 1 – ASCE 7-10 WIND LOADING CALCULATION FOR VARIOUS WIND SPEED 97
A1.1 CALCULATION FOR BASIC WIND SPEED 97
A1.2 CALCULATION FOR BASIC WIND SPEED 102
A1.3 CALCULATION FOR BASIC WIND SPEED 107
A1.4 CALCULATION FOR BASIC WIND SPEED 111
A1.5 CALCULATION FOR BASIC WIND SPEED 116
APPENDIX 2 – SIMULATION DATA EXTRACTION 121
A2.1 GENERALS 121
A2.2 LOGGING OF PARTICLES AND BOX PARAMETERS 125
A2.3 INCREASING NUMBER OF PARTICLES IN SIMULATION 130
APPENDIX 3 – GPU VS CPU COMPUTATIONAL COMPARISON 131
A3.1 GENERALS 131
A3.2 GPU AND CPU POWER CONSUMPTION AND COST COMPARISON 132
APPENDIX 4 – SIMULATING GPU TECHNICAL INFORMATION 134
A4.1 GENERALS 134
A4.2 CORE INFORMATION 134
A4.3 MEMORY INFORMATION 134
A4.3 PERFORMANCE INFORMATION 135
APPENDIX 5 – CYLINDER MODEL VERTEX DEFINITION 136
APPEDIX 6 – REAL WORLD CONDITION SIMPLE CONFORMATION TESTS 140
A6.1 FLUID PARTICLE FREE FALL TRAJECTORY AND ACCELERATION 140
dc.language.isoen
dc.title以PhysX模擬作用於結構物之風負載zh_TW
dc.titleWind Loading Simulation on Structure using Smoothed Particle Hydrodynamics in PhysX Physics Engineen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommitteeShang-Hsieh Hsieh(Shang-Hsieh Hsieh),Fu Ling Yang(Fu Ling Yang)
dc.subject.keyword風負載,zh_TW
dc.subject.keywordwind loading simulation,PhysX,en
dc.relation.page142
dc.rights.note有償授權
dc.date.accepted2012-12-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
4.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved