Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63251
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳榮河(Rong-Her Chen)
dc.contributor.authorChia-Chi Liuen
dc.contributor.author劉家齊zh_TW
dc.date.accessioned2021-06-16T16:30:45Z-
dc.date.available2014-01-16
dc.date.copyright2013-01-16
dc.date.issued2012
dc.date.submitted2012-12-22
dc.identifier.citation1. 丁伯欣 (1999),「土石流模擬材料之力學行為與透水特性研究」,碩士論文,國立台灣大學土木工程學研究所。
2. 水保局(2009),「石門水庫集水區高精度地形量測及地形貌變化歷程之研究」。
3. 水保局(2010),「石門水庫集水區豪雨誘發土砂災害之變化歷程與機制探討」。
4. 江永哲、林啟源 (1991),「土石流之發生雨量特性分析」,中華水土保持學報,第二十二卷,第2期,第21-37頁。
5. 江鋒 (2008),「植被護坡客土層主要參數的試驗研究」,碩士論文,成都西南交通大學岩土工程系。
6. 何嘉浚 (1996),「土釘擋土結構設計方法之探討」,碩士論文,國立台灣大學土木工程學研究所。
7. 呂明杰 (2004),「土壤邊坡降雨入滲行為之探討」,碩士論文,中原大學土木工程學系。
8. 林宏達、拱祥生、楊樹榮 (2007),「不飽和紅土之基質吸力特性及其應用」,海峽兩岸岩土工程/地工技術交流研討會。
9. 柯凱元 (2007),「利用砂箱試驗與遲滯模式探討土壤保水曲線與沈陷特性關係之研究」,博士論文,國立台灣大學生物環境系統工程學研究所。
10. 柯傑夫 (2011),「鐵利庫崩塌地,北台灣:以試驗判斷岩盤湧水扮演角色」,碩士論文,國立台灣大學土木工程學系。
11. 洪勇善 (1999),「土釘擋土結構之力學行為」,博士論文,國立台灣大學土木工程學研究所。
12. 洪鳳儀 (1998),「地下水自底岩向上湧升所激發之孔隙水壓與土石流發生機制之關係研究」,碩士論文,國立台灣大學土木工程學系。
13. 鄭乃元 (2000),「土石流材料破壞行為之研究」,碩士論文,國立台灣大學土木工程學系。
14. 莊鴻榜 (2002),「不飽和礫石土剪力強度之研究」,碩士論文,國立台灣大學土木工程學系。
15. 陳榮河、何嘉浚(2003),「土釘擋土工法導論」,地工技術雜誌,第98 期,第5-16頁。
16. 陳志信 (2012),「邊坡模型試驗探討護坡設施於降雨下的功能」,碩士論文,國立台灣大學土木工程學系。
17. 陳香如 (2009),「不飽和邊坡入滲之數值模擬」,碩士論文,國立台灣大學土木工程學系。
18. 陳漢平 (2003),「降雨入滲引致邊坡破壞機制之探討─以土石流源頭為對象」,碩士論文,國立台灣大學土木工程學研究所。
19. 張雨農 (2011),「以模型試驗探討錨碇地工織網系統之影響因素」,碩士論文,國立台灣大學土木工程學系。
20. 許正輝 (2005),「降雨入滲對集水區邊坡穩定之影響探討」,碩士論文,國立臺灣海洋大學河海工程學系。
21. 許振崑、林柏勳、冀樹勇、黃文洲、尹孝元 (2010),「應用LiDRA進行崩塌地潛在土砂量評估-以鐵立庫崩塌地為例」,水保技術,第五卷,第4期,第205-215頁。
22. 鄭佳元 (2009),「降雨誘發淺層坡地崩塌之研究」,碩士論文,國立成功大學資源工程學系。
23. 歐章煜 (2004),「深開挖工程-分析設計理論與實務」,科技圖書,台北。
24. 潘國樑 (2007),「工程地質通論」,五南圖書,台北。
25. 駱建利 (2009),「降雨導致邊坡破壞與土顆粒流出機制之研究」,博士論文,國立成功大學土木工程研究所。
26. 簡瑋男 (2010),「降雨引致不飽和顆粒性土壤邊坡破壞之模型試驗研究」,碩士論文,國立台灣大學土木工程學系。
27. 蘇玉峰 (2001),「土釘擋土牆設計參數研析」,碩士論文,國立台灣大學土木工程學研究所。
28. ASTM D421-85, “Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants,” ASTM International, West Conshohocken, PA, USA.
29. ASTM D422-63, “Standard Test Method for Particle-Size Analysis of Soil,”ASTM International, West Conshohocken, PA, USA.
30. ASTM D698-91, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” ASTM International, West Conshohocken, PA, USA.
31. ASTM D854-06, “Standard Test Method for Specific Gravity of Soil Solids by Water Pycnometer,”ASTM International, West Conshohocken, PA, USA.
32. ASTM D2216-05, “Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass,”ASTM International, West Conshohocken, PA, USA.
33. ASTM D2325-68, “Standard Test Method for Capillary-Moisture Relationships for Coarse- and Medium-Textured Soils by Porous-Plate Apparatus,” ASTM International, West Conshohocken, PA, USA.
34. ASTM D4253-00, “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using Vibratory Table,”ASTM International, West Conshohocken, PA, USA.
35. Bao, C.G., Gong, B.W., & Zhan, L.T. (1998), “Properties of Unsaturated Soils and Slope Stability of Expansive Soil”, USAT’98 Keynote Lecture, pp. 1-19.
36. Brand, E.W. (1981), “Some Thoughts on Rain-Induced Slope Failure”, Proceedings of 10th International Conference and Foundation Engineering, Vol.Ⅰ, pp. 373-376.
37. Campbell, R. H. (1975), “Soil Slips, Debris Flows, and Rainstorms in the Santa Monica Mountains and Vicinity, Southern California”, U.S. Geological Survey Professional Paper 851, p.55.
38. Chen, R. H., Kuo, K. J., and Chien, W.N. (2012), “Failure Mechanism of Granular Soil Slopes under High Intensity Rainfalls,”Journal of GeoEngineering, Vol. 1, pp. 284-294.
39. Croney, D., Coleman, J. D. (1948), “Soil Thermodynamics Applied to the Movement of Moisure in Road Foundations”, Proc. 7th Int. Cong. Appl. Mech., Vol.3, pp. 163-177.
40. Fredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978), “The Shear Strength of Unsaturated Soil”, Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321.
41. Fredlund, D. G. Morgenstern, N. A. (1977), “Stress State Variables for Unsaturated Soils”, Journal of Geotechnical Engineering, ASCE, GT5, Vol. 103, pp. 441-446.
42. Fredlund, D. G., Rahardjo, H. (1993), “Soil Mechanics for Unsaturated Soils”, John Wiley, New York.
43. Fredlund, D. G., Xing, A. and Huang, S. (1994), “Predicting the Permeability Function for Unsaturated Soils Using the Soil-Water Characteristic Curve”, Canadian Geotechnical Journal, 31(4), 533-546.
44. Fredlund, D. G., Xing, A. (1994), “Equations for the Soil-Water Characteristic Curve”, Canadian Geotechnical Journal, Vol. 31, pp. 521-532.
45. Geo-Slope International LTD. (2008), “SLOPE/W for Slope Stability Analysis,” vol. 4. Users Manual. Calgary, Alberta, Canada.
46. Geo-Slope International LTD. (2009), “SIGMA/W for Stress-deformation Analysis,” vol. 4. Users Manual. Calgary, Alberta, Canada.
47. Geo-Slope International LTD. (2010), “SEEP/W for Groundwater Seepage Analysis,” vol. 4. Users Manual. Calgary, Alberta, Canada.
48. Head, K. H. (1986), “Manual of Soil Laboratory Testing”, Vol. 3, Redwood Burn Limited, Trowbridge, Wiltshire.
49. Ho, D. Y. F., Fredlund, D. G. (1982), “Increase in Strength due to Suction for Two Hong Kong Soils”, Proceeding of ASCE Speciality Conference on Engineering and Construction in Tropical and Residual Soils, Hawaii, pp. 263-296.
50. Iverson, R. M. (2000), “Landslide Triggering by Rain Infiltration”, Water Resources Research, Vol. 36, No. 7, pp. 1897–1910.
51. Krahn, J., and Fredlund, D.G. (1972), “On Total, Matric and Osmotic Suction”, Soil Science, 115(5):339-348.
52. Lambe, T. W. (1958), ”The Engineering Behavior of Compacted Clay”, Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 84, SM 2, Paper no.1655, pp. 1-35.
53. Marsal, R. J. (1969), “Mechanical Properties of Rockfill Materials”, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Vol. 3, pp. 499-506.
54. Rahardjo, H., Li, X.W., Toll, D. G., and Leong, E. C. (2001), “The Effect of Antecedent Rainfall on Slope Stability”, Geotechnical and Geological Engineering, 19, 371-399.
55. Sitar, N., Anderson, S.A., and Johnson, K.A. (1992), “Conditions for Initiation of Rainfall-Induced Debris Flow”, Stability and Performance of Slopes and Embankments : Proceedings of a Special Conference at U. C. Berkeley, ASCE.
56. Tsai, T. L. (2007), “The Influence of Rainstorm Pattern on Shallow Landslide”, Environmental Geology, 53(7), 1563-1569.
57. Vanapalli, S. K., Fredlund, D. G. and Pufahl, D. E., and Clifton, A. W. (1996), “Model for the Prediction of Shear Strength with respect to Soil Suction,” Canadian Geotechnical Jouranl, Vol. 33, PP. 379-392.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63251-
dc.description.abstract邊坡常採用許多不同的護坡工法,如抗沖蝕毯、土釘工法等,這些工法在近年來氣候變換極端、降雨時空分布不均等條件下是否符合預期,是值得研究的。因此,本研即透過數值模擬分析各護坡工法之成效。研究方法主要藉由套裝軟體(GEO-Studio),以石門水庫集水區鐵立庫地區一崩塌地作為案例進行分析,並由室內試驗取得現地土壤之基本物理性質及力學參數等,配合建立現地邊坡二維數值模型(陡坡與緩坡),再以辛樂克颱風雨量作用下,探討護坡工法對邊坡之影響。探討之工法種類有現地客土噴植配合土釘工法、錨碇地工織網系統,及抗沖蝕毯(鋪地工織物)。
本研究結合三種程式進行分析,其中程式SEEP/W主要為分析孔隙壓力之變化,採用飽和/不飽和模式。SIGMA/W為應力應變分析,SLOPE/W則為邊坡穩定性分析。由分析結果得到以下結論:(1)滲透係數較低的客土能延遲孔隙壓力上升之時間,而土釘加勁能減少土壤位移量及增加土壤剪應力,使得進入塑性的區域明顯的減少。(2)隨著入滲深度的增加,土釘軸拉力也愈大,且軸拉力最大值發生處亦隨著入滲深度之增加,而從接近坡面處往土釘中間移動。而土釘之最大剪力、最大彎矩值都發生在接近坡面處。整體來說,土釘所承受軸拉力相對剪力及彎矩顯得更為重要。(3)織物在坡面提供一排水路徑,使得往坡內的入滲量大為減少,造成塑性區、位移量、土釘軸力等皆比現地工法小。(4)單獨使用地工織物雖能減少入滲量,但若土壤抗剪強度不足,還是需要配合土釘工法才能達到穩定之效用。
zh_TW
dc.description.abstractDifferent protection methods, such as geotextile blankets for erosion control, soil nails, and ground anchors, are often used to protect slopes. The effect of these engineering works at extreme climate condition, e.g., uneven distribution of rainfalls with high intensities in recent years, is worth studying. In this research, the effect of some slope protection works were studied through numerical analysis by using the package software named GEO-Studio. The Tieliku landslide in the catchment area of the Shihmen Reservoir was taken as the case for this study.
The engineering properties of the soil were obtained from the in-situ soil samples tested in the laboratory. The numerical model consisted of two slopes, steep and gentle, in plane-strain condition. The rainfall data was that from the Sinlaku rainfall. The engineering works analyzed were the vegetation cover by hydro-seeding method in conjunction with soil nails, the anchored geosynthetic slope system, and the geotextile blanket for erosion control. The following three programs were employed in the analysis. First, the SEEP/W program is for analysis of the change in pore pressure, considering both saturated and unsaturated modes. Second, the SIGMA/W program is for stress and strain analyses. Third, the SLOPE/W program is for stability analysis of the slope.
The conclusions are made as follows. (1) The foreign soil from hydro-seeding has a low coefficient of permeability and can delay the increase in pore pressure. In addition, the soil nails can reduce the displacement of soil as well as decrease significantly the plastic zones in the slope. (2) With increased infiltration depth, the axial force in the anchor increases, and the location of maximum tensile force shifts from close to the slope face initially to the middle of the anchor, while the maximum shear force and the maximum bending moment are close to the surface. In general, the axis force in a nail is relatively more important than its shear force and the bending moment. (3) The geotextile blanket provides a drainage path along the slope face, thus it reduces infiltration as well as the plastic zone, the displacement, and the axial force in the nails. Moreover, the axial forces are lower than those in the case of vegetation cover with nails. (4) Though use of a geotextile blanket alone may reduce infiltration, soil nails are still needed if the soil has inadequate shear strength to keep the slope stable.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:30:45Z (GMT). No. of bitstreams: 1
ntu-101-R99521102-1.pdf: 25014350 bytes, checksum: 236fd3245c1d488d564568652ccf9df7 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 I
ABSTRACT II
目錄 III
表目錄 VII
圖目錄 IX
符號說明 XIV
第一章 導論 1
1.1研究動機 1
1.2研究方法 2
1.3研究內容 2
第二章 文獻回顧 7
2.1不飽和邊坡 7
2.2不飽和土壤特性 7
2.2.1不飽和土壤之組成 7
2.2.2不飽和土壤之含水特性 9
2.2.3不飽和土壤剪力強度理論 10
2.3降雨對邊坡之影響 12
2.3.1前期降雨 12
2.3.2降雨特性 13
2.3.3數值分析 13
2.3.4 室內試驗 14
2.4 研究方向 15
第三章 研究區域基本資料 27
3.1區域概況 27
3.1.1地理 27
3.1.2地質 27
3.1.3鐵立庫崩塌地 28
3.1.4護坡工程 29
3.2土壤物理性質 29
3.3室內試驗 30
3.3.1模擬現地級配之方法 30
3.3.2 飽和壓密不排水試驗 31
3.3.3三軸透水試驗 33
3.3.4土壤水分特性試驗 34
第四章 分析模式 53
4.1數值軟體簡介 53
4.1.1運算原理 53
4.1.2土壤元素 54
4.1.3結構元素 56
4.2分析流程 56
4.3邊界條件 57
4.4入滲試驗之驗證 58
4.5砂箱試驗之模擬 59
4.6加勁材之模擬 61
4.6.1平面應變的假設 61
4.6.2界面元素設定 63
4.7數值模型之建立 64
第五章 分析結果與討論 91
5.1自然邊坡 91
5.1.1分析結果討論 91
5.1.2小結 93
5.2 現地護坡工法 94
5.2.1分析結果討論 94
5.2.2小結 97
5.3 錨碇織網系統之應用 97
5.3.1分析結果討論 98
5.3.2小結 99
5.4 抗沖蝕毯之應用 100
5.4.1分析結果討論 100
5.4.2小結 102
第六章 結論與建議 151
6.1結論 151
6.2建議 153
參考文獻 155
附錄A 程式理論背景 161
A.1 SEEP/W 程式分析應用介紹 161
A.1.1 達西定律(Darcy's Law) 161
A.1.2 控制方程式(Governing Equation) 162
A.1.3 水力梯度及流速(Gradients and Velocities) 163
A.1.4 水力傳導係數函數 163
A.2 SIGMA/W 程式分析應用介紹 164
A.2.1 應力-應變理論 165
A.2.2 應力-滲流耦合分析 166
A.2.3 結構元素 168
A.3 SLOPE/W 程式分析應用介紹 172
A.3.1 程式破壞面搜尋方式 173
A.3.2 極限平衡法(limit equilibrium method) 173
A.3.3 有限元素應力分析法(finite element stress-based method) 175
dc.language.isozh-TW
dc.subject土釘zh_TW
dc.subject邊坡zh_TW
dc.subject護坡工法zh_TW
dc.subject數值模擬zh_TW
dc.subject降雨zh_TW
dc.subjectanchoren
dc.subjectslopeen
dc.subjectslope protection methodsen
dc.subjectnumerical analysisen
dc.subjectrainfallen
dc.title護坡工法之數值分析-以鐵立庫崩塌邊坡為例zh_TW
dc.titleNumerical Analysis of Slope Protection Methods
-- A Case Study of the Slope Failure in Tieliku Area
en
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳朝賢(Chao-Sian Wu),劉家男(Chia-Nan Liu)
dc.subject.keyword邊坡,護坡工法,數值模擬,降雨,土釘,zh_TW
dc.subject.keywordslope,slope protection methods,numerical analysis,rainfall,anchor,en
dc.relation.page180
dc.rights.note有償授權
dc.date.accepted2012-12-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
24.43 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved