請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63234完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝志豪(Chih-hao Hsieh) | |
| dc.contributor.author | Kuan-Yu Lin | en |
| dc.contributor.author | 林冠宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:29:46Z | - |
| dc.date.available | 2015-01-16 | |
| dc.date.copyright | 2013-01-16 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-12-30 | |
| dc.identifier.citation | Alldredge, A. L.: Abandoned larvacean houses: a unique food source in the pelagic environment, Science, 177, 885-887, 1972.
Almeda, R., Calbet, A., Alcaraz, M., Yebra, L., and Saiz, E.: Effects of temperature and food concentration on the survival, development and growth rates of naupliar stages of Oithona davisae (Copepoda, Cyclopoida), Mar. Ecol. Prog. Ser., 410, 97-109, 2010. Arendt, K. E., Nielsen, T. G., Rysgaard, S., and Tonnesson, K.: Differences in plankton community structure along the Godthabsfjord, from the Greenland Ice Sheet to offshore waters, Mar. Ecol. Prog. Ser., 401, 49-62, 2010. Atkinson, D.: Temperature and organism size: a biological law for ectotherms? Adv. Ecol. Res., 25, 1-58, 1994. Atkinson, A.: Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations, Mar. Ecol. Prog. Ser., 130, 85-96, 1996. Avila, T. R., de Souza Machado, A. A., and Bianchini, A.: Chitobiase of planktonic crustaceans from South Atlantic coast (Southern Brazil): Characterization and influence of abiotic parameters on enzyme activity, J. Exp. Mar. Biol. Ecol., 407, 323-329, 2011. Banavar, J. R., Damuth, J., Maritan, A., and Rinaldo, A.: Supply-demand balance and metabolic scaling, P. Natl. Acad. Sci. USA, 99, 10506-10509, 2002. Beers, J. R.: Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda, Limnol. Oceanogr., 11, 520-528, 1966. Berggreen, U., Hansen, B., and Kiorboe, T.: Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production, Mar. Biol., 99, 341-352, 1988. Besiktepe, S. and Dam, H. G.: Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa, Mar. Ecol. Prog. Ser., 229, 151-164, 2002. Beyrend-Dur, D., Kumar, R., Rao, T. R., Souissi, S., Cheng, S. H., and Hwang, J. H.: Demographic parameters of adults of Pseudodiaptomus annandalei: temperature-salinity and generation effects, J. Exp. Mar. Biol. Ecol., 404, 1-14, 2011. Bowman, A. W. and Azzalini, A.: Applied Smoothing Techniques for Data Analysis, Oxford University New York, 1997. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B.: Toward a metabolic theory of ecology, Ecology, 85, 1771-1789, 2004. Calbet, A., Trepat, I., and Arin, L.: Naupliar growth versus egg production in the calanoid copepod Centropages typicus, J. Plankton Res., 22, 1393-1402, 2000. Carroll, R. J. and Ruppert, D.: The use and misuse of orthogonal regression in linear errors-in-variables models, American Statistician, 50, 1-6, 1996. Chen, M. R., Ka, S., and Hwang, J. S.: Diet of the copepod Calanus sinicus Brodsky, 1962 (Copepoda, Calanoida, Calanidae) in northern coastal waters of Taiwan during the northeast monsoon period, Crustaceana, 83, 851-864, 2010. Chinnery, F. E. and Williams, J. A.: The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival, Mar. Biol., 145, 733-738, 2004. Chown, S. L., Marais, E., Terblanche, J. S., Klok, C. J., Lighton, J. R. B., and Blackburn, T. M.: Scaling of insect metabolic rate in inconsistent with the nutrient supply network model, Funct. Ecol., 21, 282-290, 2007. Clarke, A.: Is there a universal temperature dependence of metabolism? Funct. Ecol., 18, 252-256, 2004. Conover, R. J.: Assimilation of organic matter by zooplankton, Limnol. Oceanogr., 11, 338-345, 1966. de Castro, F. and Gaedke, U.: The metabolism of lake plankton does not support the metabolic theory of ecology, Oikos, 117, 1218-1226, 2008. Duncan, R. P., Forsyth, D. M., and Hone, J.: Testing the metabolic theory of ecology: allometric scaling exponents in mammals, Ecology, 88, 324-333, 2007. Dzierzbicka-Głowacka, L.: Growth and development of copepodite stages of Pseudocalanus spp., J. Plankton Res., 26, 49-60, 2004. Ehnes, R. B., Rall, B. C., and Brose, U.: Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates, Ecol. Lett., 14, 993-1000, 2011. Fagan, W. F., Lynch, H. J., and Noon, B. R.: Pitfalls and challenges of estimating population growth rate from empirical data: consequences for allometric scaling relations, Oikos, 119, 455-464, 2010. Finlay, K. and Roff, J. C.: Ontogenetic growth rate responses of temperate marine copepods to chlorophyll concentration and light, Mar. Ecol. Prog. Ser., 313, 145-156, 2006. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L.: Effects of size and temperature on metabolic rate, Science, 293, 2248-2251, 2001. Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M., and Brown, J. H.: Effects of size and temperature on developmental time, Nature, 417, 70-73, 2002. Gillooly, J. F., Allen, A. P., Savage, V. M., Charnov, E. L., West, G. B., and Brown, J. H.: Response to Clarke and Fraser: effects of temperature on metabolic rate, Funct. Ecol., 20, 400-404, 2006. Gong, G. C., Wen, Y. H., Wang, B. W., and Liu, G. J.: Seasonal variation of chlorophyll a concentration, primary production and environment conditions in the East China Sea, Deep-Sea Res. Pt. II, 50, 1219-1236, 2003. Gonzalez, H. and Smetacek, V.: The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton fecal material, Mar. Ecol. Prog. Ser., 113, 233-246, 1994. Gould, A. L. and Kimmerer, W. J.: Development, growth, and reproduction of the cyclopoid copepod Limnoithona tetraspina in the upper San Francisco Estuary, Mar. Ecol. Prog. Ser., 412, 163-177, 2010. Harris, R. P. and Paffenhofer, G. A.: Feeding, growth and reproduction of the marine planktonic copepod Temora longicornis Muller, J. Mar. Biol. Assoc. U.K., 56, 675-690, 1976. Hawser, S. P., O'Neil, J. M., Roman, M. R., and Codd, G. A.: Toxicity of blooms of the cyanobacterium Trichodesmium to zooplankton, J. Appl. Phycol., 4, 79-86, 1992. Hirst, A. G. and Sheader, M.: Are in situ weight-specific growth rates body-size independent in marine planktonic copepods? A re-analysis of the global syntheses and a new empirical model, Mar. Ecol. Prog. Ser., 154, 155-165, 1997. Hirst, A. G. and Lampitt, R. S.: Towards a global model of in situ weight-specific growth in marine planktonic copepods, Mar. Biol., 132, 247-257, 1998. Hirst, A. G. and Bunker, A. J.: Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight, Limnol. Oceanogr., 48, 1988-2010, 2003. Hopcroft, R. R., Roff, J. C., Webber, M. K., and Witt, J. D. S.: Zooplankton growth rates: the influence of size and resources in tropical marine copepodites, Mar. Biol., 132, 67-77, 1998. Hopcroft, R. R. and Roff, J. C.: Zooplankton growth rates: the influence of size in nauplii of tropical marine copepods, Mar. Biol., 132, 87-96, 1998. Huntley, M. E. and Lopez, M. M. G.: Temperature-dependent production of marine copepods: a global synthesis, Am. Nat., 140, 201-242, 1992. Ianora, A., Poulet, S. A., and Miralto, A.: The effects of diatoms on copepod reproduction: a review, Phycologia, 42, 351-363, 2003. Irigoien, X., Harris, R., Verheye, H. M., Joly, P., Runge, J., Starr, M., Pond, D., Campbell, R., Shreeve, R., Ward, P., Smith, A. N., Dam, H. G., Peterson, W., Tirelli, V., Koski, M., Smith, T., Harbour, D., and Davidson, R.: Copepod hatching success in marine ecosystems with high diatom concentrations, Nature, 419, 387-389, 2002. Irlich, U. M., Terblanche, J. S., Blackburn, T. M., and Chown, S. L.: Insect rate-temperature relationships: environmental variation and the metabolic theory of ecology, Am. Nat., 174, 819-835, 2009. Ives, A. R. and Zhu, J.: Statistics for correlated data: phylogenies, space, and time, Ecol. Appl., 16, 20-32, 2006. Jones, R. H., Flynn, K. J., and Anderson, T. R.: Effect of food quality on carbon and nitrogen growth efficiency in the copepod Acartia tonsa, Mar. Ecol. Prog. Ser., 235, 147-156, 2002. Kimmerer, W. J. and McKinnon, A. D.: Growth, mortality and secondary production of the copepod Acartia tranteri in Westernport Bay, Australia, Limnol. Oceanogr., 32, 14-28, 1987. Kimmerer, W. J., Hirst, A. G., Hopcroft, R. R., and McKinnon, A. D.: Estimating juvenile copepod growth rates: corrections, inter-comparisons and recommendations, Mar. Ecol. Prog. Ser., 336, 187-202, 2007. Kiorboe, T. and Sabatini, M.: Scaling of fecundity, growth and development in marine planktonic copepods, Mar. Ecol. Prog. Ser., 120, 285-298, 1995. Kiorboe, T.: Population regulation and role of mesozooplankton in shaping marine pelagic food webs, Hydrobiologia, 363, 13-27, 1997. Kleppel, G. S., Davis, C. S., and Carter, K.: Temperature and copepod growth in the sea: a comment on the temperature-dependent model of Huntley and Lopez, Am. Nat., 148, 397-406, 1996. Kobari, T., Imamura, S., and Habano, A.: Growth rate of predominant copepods in Kagoshima Bay - estimation by artificial cohort method, Mem. Fac. Fish. Kagoshima Univ., 56, 45-54, 2007. Kozłowski, J., Konarzewski, M., and Gawelczyk, A. T.: Cell size as a link between noncoding DNA and metabolic rate scaling, P. Natl. Acad. Sci. USA, 100, 14080-14085, 2003. Lan, Y. C., Lee, M. A., Chen, W. Y., Hsieh, F. J., Pan, J. Y., Liu, D. C., and Su, W. C.: Seasonal relationships between the copepod community and hydrographic conditions in the southern East China Sea, ICES J. Mar. Sci., 65, 462-468, 2008. Landry, M. R.: Population dynamics of the planktonic marine copepod, Acartia clausi Giesbrecht, in a small temperate lagoon, University of Washington, Seattle, 1976. Landry, M. R.: Predatory feeding behavior of the marine cyclopoid copepod Corycaeus anglicus, Mar. Biol., 85, 163-169, 1985. Lawrence, S. G., Ahmad, A., and Azam, F.: Fate of particle-bound bacteria ingested by Calanus pacificus, Mar. Ecol. Prog. Ser., 97, 299-307, 1993. Leandro, S. M., Tiselius, P., and Queriroga, H.: Growth and development of nauplii and copepodites of the estuarine copepods Acartia tonsa from southern Europe (Ria de Aveiro, Portugal) under saturating food concentration, Mar. Biol., 150, 121-129, 2006. Lin, K. Y., Sastri, A., and Hsieh, C. H.: A kernel-based method for estimating copepod growth rates when biomass distribution is multi-modal, Zool. Stud., in review. Liu, H. and Hopcroft, R. R.: Growth and development of Neocalanus flemingeri/plumchrus in the northern Gulf of Alaska: validation of the artificial-cohort method in cold waters, J. Plankton Res., 28, 87-101, 2006a. Liu, H. and Hopcroft, R. R.: Growth and development of Metridia pacifica (Copepoda : Calanoida) in the northern Gulf of Alaska, J. Plankton Res., 28, 769-781, 2006b. Lo, W. T., Shih, C. T., and Hwang, J. S.: Copepod assemblages and diel vertical migration in the East China Sea, North of Taiwan, Crustaceana, 77, 955-971, 2004. Longhurst, A. R.: The structure and evolution of plankton communities, Prog. Oceanogr., 15, 1-35, 1985. Madsen, S. D., Nielsen, T. G., and Hansen, B. W.: Annual population development and production by small copepods in Disko Bay, western Greenland, Mar. Biol., 155, 63-77, 2008. Mauchline, J., Blaxter, J. H. S., Southward, A. J., and Tyler, P. A. (Eds.): The Biology of Calanoid Copepods, Elsevier Academic Press, San Diego, 710 pp., 1998. McKinnon, A. D. and Ayukai, T.: Copepod egg production and food resources in Exmouth Gulf, Western Australia, Mar. Freshwater Res., 47, 595-603, 1996. McKinnon, A. D. and Duggan, S.: Summer copepod production in subtropical waters adjacent to Australia's North West Cape, Mar. Biol., 143, 897-907, 2003. McLaren, I. A.: Generation lengths of some temperate marine copepods: Estimation, prediction, and implications, J. Fish. Res. Board. Can., 35, 1330-1342, 1978. Merrell, J. R. and Stoecker, D. K.: Differential grazing on protozoan microplankton by developmental stages of the calanoid copepod Eurytemora affinis Poppe, J. Plankton Res., 20, 289-304, 1998. Miller, C. B., Johnson, J. K., and Heinle, D. R.: Growth rules in the marine copepod genus Acartia, Limnol. Oceanogr., 22, 326-335, 1977. Miyashita, L. K., Junior, M. D. M., and Lopes, R. M.: Estuarine and oceanic influences on copepod abundance and production of a subtropical coastal area, J. Plankton Res., 31, 815-826, 2009. Mullin, M. M., Brook, E. R., and Steel, J. H. (Eds.): Growth and metabolism of two planktonic, marine copepods as influenced by temperature and type of food, in: Marine food chains, University of California Press, Great Britain, 74-95, 1997. O’Connor, M. P., Agosta, S. J., Hansen, F., Kemp, S. J., Sieg, A. E., McNair, J. N., and Dunham, A. E.: Phylogeny, regression, and the allometry of physiological traits, Am. Nat., 170, 431-442, 2007. Ohtsuka, S. and Kubo, N.: Larvaceans and their houses as important food for some pelagic copepods, Proceedings of the fourth International Conference on Copepods, 16-20 September 1990, Bull. Plankton Soc. Japan, Spec. Vol. (1991), 535-551, 1991. Okasaki, Y., Noguchi, T., Nakata, H., and Nishiuchi, K.: Distribution and abundance of copepod nauplii in southern part of the East China Sea: implications for prey availability to jack mackerel Trachurus japonicus larvae, Fisheries Sci., 74, 1235-1244, 2008. Paffenhofer, G. A. and Harris, R. P.: Feeding, growth and reproduction of the marine planktonic copepod Pseudocalanus elongatus Boeck, J. Mar. Biol. Assoc. U.K., 56, 327-344, 1976. Paffenhofer, G. A.: Feeding, growth and food conversion of the marine planktonic copepod Calanus helgolandicus, Limnol. Oceanogr., 21, 39-50, 1976. Paffenhofer, G. A.: An assessment of the effects of diatoms on planktonic copepods, Mar. Ecol. Prog. Ser., 227, 305-310, 2002. Peters, R. H.: Ecological implications of body size, Cambridge University Press, New York, 1983. Peters, J., Renz, J., van Beusekom, J., Boersma, M., and Hagen, W.: Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in the Central Baltic Sea (Bornholm Basin): evidence from lipid composition, Mar. Biol., 149, 1417-1429, 2006. Postel, L., Fock, H., Hagen, W., Harris, R. P., Wiebe, P. H., Lenz, J., Skjoldal, H. R., and Huntley, M. E. (Eds.): Zooplankton methodology manual, Biomass and abundance, Chapter 4, Academic Press, London, 2000. Poulet, S. A., Ianora, A., Laabir, M., and Klein Breteler, W. C. M.: Towards the measurement of secondary production and recruitment in copepods, ICES J. Mar. Sci., 52, 359-368, 1995. Quinn, G. P. and Keough, M. J.: Experimental design and data analysis for biologists, Cambridge University Press, New York, 2002. Reinfelder, J. R. and Fisher, N. S.: The assimilation of elements ingested by marine copepods, Science, 251, 794-796, 1991. Reiss, J. and Schmid-Araya, J. M.: Life history allometries and production of small fauna, Ecology, 91, 497-507, 2010. Renz, J. and Hirche, J.: Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: I. Seasonal and spatial distribution, Mar. Biol., 138, 567-580, 2006. Richardson, A. J. and Verheye, H. M.: Growth rate of copepods in the southern Benguela upwelling system: the interplay between body size and food, Limnol. Oceanogr., 44, 382-392, 1999. Runge, J. A., Roff, J. C., Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., and Huntley, M. (Eds.): The measurement of growth and reproductive rates, ICES Zooplankton Methodology Manual, Academic Press, London, 2000. Savage, V. M., Gillooly, J. F., Woodruff, W. H., West, G. B., Allen, A. P., Enquist, B. J., and Brown, J. H.: The predominance of quarter-power scaling in biology, Funct. Ecol., 18, 257-282, 2004. Seber, G. A. F. and Hoboken, N. J.: Multivariate Observations, John Wiley & Sons. Inc., Canada, 1984. Seibel, B. A.: On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca), J. Exp. Biol., 210, 1-11, 2007. Svetlichny, L. S.: Calculation of planktonic copepod biomass by means of coefficients of proportionality between volume and linear dimensions of the body, Ekol. Morya., 15, 46-58, 1983. Tilman, D., HilleRisLambers, J., Harpole, S., Dybzinski, R., Fargione, J., Clark, C., and Lehman, C.: Does metabolic theory apply to community ecology? It’s a matter of scale, Ecology, 85, 1797-1799, 2004. Touratier, F., Legendre, L., and Vezina, A.: Model of copepod growth influenced by the food carbon:nitrogen ratio and concentration, under the hypothesis of strict homeostasis, J. Plankton Res., 21, 1111-1132, 1999. Tseng, L. C., Souissi, S., Dahms, H. U., Chen, Q. C., and Hwang, J. S.: Copepod communities related to water masses in the southwest East China Sea, Helgol. Mar. Res., 62, 153-165, 2008. Turner, J. T., Tester, P. A., and Conley, W. J.: Zooplankton feeding ecology: predation by the marine cyclopoid copepod Corycaeus amazonicus F. Dahl upon natural prey, J. Exp. Mar. Biol. Ecol., 84, 191-202, 1984. Turner, J. T. and Roff, J. C.: Trophic levels and trophospecies in marine plankton: lessons from the microbial food web, Mar. Microb. Food Webs, 7, 225-248, 1993. Turner, J. T.: The importance of small planktonic copepods and their roles in pelagic marine food webs, Zool. Stud., 43, 255-266, 2004. Uye, S. I.: Temperature-dependent development and growth of the planktonic copepod Paracalanus sp. in the laboratory, Proceedings of the fourth International Conference on Copepods, 16-20 September 1990, Bull. Plankton Soc. Japan, Spec. Vol. (1991), 627-636, 1991. Uye, S. I.: Replacement of large copepods by small ones with eutrophication of embayments: cause and consequence, Hydrobiologia, 292/293, 513-519, 1994. Vidal, J.: Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp., Mar. Biol., 56, 111-134, 1980. Wang, R. and Fan, C.: Copepods feeding activities and its contribution to downwards vertical flux of carbon in the East China Sea, Oceanol. Limnol. Sin., 28, 579-587, 1997. Wang, C. F., Hsu, M. H., and Liu, W. C.: Simulation of water quality and plankton dynamics in the Danshuei River estuary, Taiwan, J. Environ. Sci. Heal. A, 42, 933-953, 2007. Webber, M. K. and Roff, J. C.: Annual biomass and production of the oceanic copepod community off Discovery Bay, Jamaica, Mar. Biol., 123, 481-495, 1995. West, G. B., Brown, J. H., and Enquist, B. J.: A general model for the origin of allometric scaling laws in biology, Science, 276, 122-126, 1997. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63234 | - |
| dc.description.abstract | 動物性浮游生物在海洋系統中扮演重要的角色,了解其在自然環境中群集尺度的生長速率如何變動對於海洋系統在環境改變下如何變動的預測工作十分重要。本研究使用人造年級群方式檢驗東海區域橈腳類群集單位重量生長速率受溫度、體型大小及葉綠素濃度(作為食物參考量)的影響,其中特別檢驗生態代謝理論將橈腳類生長速率時空變異與溫度及體型大小的關係作連結、藉以描述橈腳類群集生長速率之假說。結果顯示本研究區域之橈腳類群集單位重量生長速率大致與生態代謝理論相符、與溫度正相關而與體型大小負相關;然而其體型大小的迴歸係數與理論預測值不符,我們發現此偏誤可能來自於食物可得性的影響。此外,溫度及體型大小的迴歸係數在不同的分類群之間亦不同。綜合結果顯示欲了解自然環境的橈腳類生長速率應考慮食物受限及分類群差異的影響,而生態代謝理論衍生預測所受到的影響則有賴未來之深入探討。 | zh_TW |
| dc.description.abstract | Zooplankton play an essential role in marine food webs, and understanding how community-level growth rates of zooplankton vary in the field is critical for predicting how marine ecosystem function may vary in the face of environmental changes. Here, we used the artificial cohort method to examine the effects of temperature, body size, and chlorophyll concentration (a proxy for food) on weight-specific growth rates for copepod communities in the East China Sea. Specifically, we tested the hypothesis that copepod community growth rates can be described by the metabolic theory of ecology (MTE), linking spatio-temporal variation of copepod growth rate with temperature and their body size. Our results generally agree with predictions made by the MTE and demonstrate that weight-specific growth rates of copepod communities in our study area are positively related with temperature and negatively related to body size. However, the regression coefficients of body size do not approach the theoretical predictions. Furthermore, we find that the deviation from the MTE predictions may be partly attributed to the effect of food availability (which is not explicitly accounted for by the MTE). In addition, significant difference in the coefficients of temperature and body size exists among taxonomic groups. Our results suggest that considering the effects of food limitation and taxonomy is necessary to better understand copepod growth rates under in situ conditions, and such effects on the MTE-based prediction needs further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:29:46Z (GMT). No. of bitstreams: 1 ntu-101-R99241202-1.pdf: 3840433 bytes, checksum: cb3a7782d3d46e51e3e9778b70cf2743 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES 1 LIST OF TABLES 2 INTRODUCTION 3 MATERIALS AND METHODS 7 Sampling 7 Artificial cohort method 8 Classification, enumeration, and growth rate estimation 9 Data pre-treatment 12 Testing metabolic theory of ecology (MTE) 13 Testing effects of food limitation 13 Spatio-temporal variation and the effect of taxonomy in growth rate 15 RESULTS 16 Taxonomic composition 16 Weight-specific growth rate in relation to temperature, body size and chlorophyll a concentration 17 Seasonal and spatial variation and effects of taxonomy 18 DISCUSSION 19 Test of the MTE – Temperature effects 19 Test of the MTE – Body size effects 20 Test of the MTE – Food availability 24 Spatio-temporal patterns 27 Growth rate measurements compared with other empirical model predictions 28 Taxonomic difference 29 Conclusion 30 REFERENCES 31 SUPPLEMENT 59 Non-phytoplankton food sources for copepods 59 Information of experimental sites 62 Schematic diagram of artificial cohort incubation experiments 63 Multiple-peak consideration in determining community carbon biomass before and after incubation for growth rate estimates 64 Illustration of “food-limited” growth 68 Comparison of growth rates in different K-means groups 69 | |
| dc.language.iso | en | |
| dc.subject | 食物可得性 | zh_TW |
| dc.subject | 分類群 | zh_TW |
| dc.subject | 體型大小 | zh_TW |
| dc.subject | 溫度 | zh_TW |
| dc.subject | 生態代謝理論 | zh_TW |
| dc.subject | 橈腳類群集 | zh_TW |
| dc.subject | taxonomy | en |
| dc.subject | metabolic theory of ecology | en |
| dc.subject | temperature | en |
| dc.subject | body size | en |
| dc.subject | food availability | en |
| dc.subject | copepod community | en |
| dc.title | 東海橈腳類群集生長速率與體型大小、溫度及食物可得性的關係︰生態代謝理論之檢驗 | zh_TW |
| dc.title | Copepod community growth rates in relation to body size, temperature, and food availability in the East China Sea: A test of metabolic theory of ecology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 三木健(Takeshi Miki),町田龍二(Ryuji Machida),戴昌鳳(Chang-Feng Dai),石長泰(Chang-Tai Shih) | |
| dc.subject.keyword | 橈腳類群集,生態代謝理論,溫度,體型大小,食物可得性,分類群, | zh_TW |
| dc.subject.keyword | copepod community,metabolic theory of ecology,temperature,body size,food availability,taxonomy, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-01-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
