請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63216
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱奕鵬(Yih-Peng? Chiou) | |
dc.contributor.author | Chin-Hung Shen | en |
dc.contributor.author | 沈親宏 | zh_TW |
dc.date.accessioned | 2021-06-16T16:28:46Z | - |
dc.date.available | 2025-06-09 | |
dc.date.copyright | 2020-06-09 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-05-11 | |
dc.identifier.citation | [1] M. D. Renzo et al., 'Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come,' EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, p. 129, 2019
[2] H.-H. Hsiao, C. Chu, and D. P. Tsai, 'Fundamentals and Applications of Metasurfaces,' Small Methods, p. 1600064, 2017 [3] H. F. Ma and T. J. J. N. c. Cui, 'Three-dimensional broadband ground-plane cloak made of metamaterials,' vol. 1, no. 1, pp. 1-6, 2010 [4] N. Liu, H. Liu, S. Zhu, and H. J. N. P. Giessen, 'Stereometamaterials,' vol. 3, no. 3, p. 157, 2009 [5] R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. J. P. R. B. Soukoulis, 'Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,' vol. 83, no. 3, p. 035105, 2011 [6] N. Yu and F. Capasso, 'Flat optics with designer metasurfaces,' Nature Materials, vol. 13, no. 2, pp. 139-150, 2014 [7] S. Sun et al., 'High-efficiency broadband anomalous reflection by gradient meta-surfaces,' Nano Lett, vol. 12, no. 12, pp. 6223-9, 2012 [8] A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, 'Gap plasmon-based metasurfaces for total control of reflected light,' Scientific Reports, vol. 3, no. 1, p. 2155, 2013 [9] Z. Guo, L. Zhu, F. Shen, H. Zhou, and R. Gao, 'Dielectric metasurface based high-efficiency polarization splitters,' RSC Advances, 10.1039/C6RA27741A vol. 7, no. 16, pp. 9872-9879, 2017 [10] D. Zhang et al., 'Nanoscale beam splitters based on gradient metasurfaces,' Optics Letters, vol. 43, p. 267, 2018 [11] L. Huang et al., 'Three-dimensional optical holography using a plasmonic metasurface,' Nature Communications, vol. 4, no. 1, p. 2808, 2013 [12] G. Yoon, D. Lee, K. T. Nam, and J. Rho, 'Geometric metasurface enabling polarization independent beam splitting,' Scientific Reports, vol. 8, no. 1, p. 9468, 2018 [13] D. Wen et al., 'Helicity multiplexed broadband metasurface holograms,' Nature Communications, vol. 6, no. 1, p. 8241, 2015 [14] A. Pors and S. I. Bozhevolnyi, 'Efficient and broadband quarter-wave plates by gap-plasmon resonators,' Optics Express, vol. 21, no. 3, pp. 2942-2952, 2013 [15] A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, 'Broadband plasmonic half-wave plates in reflection,' Optics Letters, vol. 38, no. 4, pp. 513-515, 2013 [16] X. Ma et al., 'A planar chiral meta-surface for optical vortex generation and focusing,' Scientific Reports, vol. 5, no. 1, p. 10365, 2015 [17] M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. J. N. l. Litchinitser, 'High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,' vol. 15, no. 9, pp. 6261-6266, 2015 [18] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, 'Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,' Science, vol. 352, no. 6290, p. 1190, 2016 [19] H.-H. Hsiao et al., 'Integrated Resonant Unit of Metasurfaces for Broadband Efficiency and Phase Manipulation,' Advanced Optical Materials, vol. 6, no. 12, p. 1800031, 2018 [20] W. T. Chen et al., 'A broadband achromatic metalens for focusing and imaging in the visible,' Nature Nanotechnology, vol. 13, no. 3, pp. 220-226, 2018 [21] S. Wang et al., 'A broadband achromatic metalens in the visible,' Nature Nanotechnology, vol. 13, no. 3, pp. 227-232, 2018 [22] A. Komar et al., 'Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces,' ACS Photonics, vol. 5, no. 5, pp. 1742-1748, 2018 [23] P. C. Wu et al., 'Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces,' Nature Communications, vol. 10, no. 1, p. 3654, 2019 [24] Y.-W. Huang et al., 'Gate-tunable conducting oxide metasurfaces,' vol. 16, no. 9, pp. 5319-5325, 2016 [25] N. Yu et al., 'Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,' Science, vol. 334, no. 6054, p. 333, 2011 [26] L. Huang et al., 'Dispersionless Phase Discontinuities for Controlling Light Propagation,' Nano Letters, vol. 12, no. 11, pp. 5750-5755, 2012 [27] X. Zhang et al., 'Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities (Adv. Mater. 33/2013),' vol. 25, no. 33, pp. 4566-4566, 2013 [28] X. Gao, X. Han, W. Cao, H. O. Li, H. F. Ma, and T. J. Cui, 'Ultrawideband and High-Efficiency Linear Polarization Converter Based on Double V-Shaped Metasurface,' IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3522-3530, 2015 [29] S. Sun et al., 'High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces,' Nano Letters, vol. 12, no. 12, pp. 6223-6229, 2012 [30] D. Fei, Y. Yuanqing, A. D. Rucha, and I. B. Sergey, 'A review of gap-surface plasmon metasurfaces: fundamentals and applications,' Nanophotonics, vol. 7, no. 6, pp. 1129-1156, 2018 [31] W. L. Barnes, A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature, vol. 424, no. 6950, pp. 824-830, 2003 [32] A. Vahdat-Ahar and M. H. V. Samiei, 'Designing a High Performance Phase Gradient Metasurface Using Optical Patch Antennas with Different Patch Thicknesses,' Plasmonics, vol. 13, no. 1, pp. 71-80, 2018 [33] Z. Liu et al., 'High-Performance Broadband Circularly Polarized Beam Deflector by Mirror Effect of Multinanorod Metasurfaces,' Advanced Functional Materials, vol. 25, 2015 [34] A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, 'Plasmonic metagratings for simultaneous determination of Stokes parameters,' Optica, vol. 2, no. 8, pp. 716-723, 2015 [35] J. Jin, The Finite Element Method in Electromagnetics. Wiley-IEEE Press, 2014. [36] CST GmbH. www.cst.de [37] E. Hecht, 'Optics,' 4th, Ed.: Addison-Wesley, 2002, pp. 325-379. [38] H. A. Haus, Waves and fields in optoelectronics. Englewood Cliffs, NJ : Prentice-Hall, 1984. [39] J. W. Cooley and J. W. Tukey, 'An Algorithm for the Machine Calculation of Complex Fourier Series,' Mathematics of Computation, vol. 19, no. 90, pp. 297-301, 1965 [40] M. T. Heideman, D. H. Johnson, and C. S. Burrus, 'Gauss and the history of the fast Fourier transform,' Archive for History of Exact Sciences, vol. 34, no. 3, pp. 265-277, 1985 [41] M. T. Heath, Scientific computing: an introductory survey. SIAM, 2018. [42] A. Pors and S. I. Bozhevolnyi, 'Plasmonic metasurfaces for efficient phase control in reflection,' Optics Express, vol. 21, no. 22, pp. 27438-27451, 2013 [43] P. B. Johnson and R. W. Christy, 'Optical Constants of the Noble Metals,' Physical Review B, vol. 6, no. 12, pp. 4370-4379, 1972 [44] N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, 'A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces,' Nano Letters, vol. 12, no. 12, pp. 6328-6333, 2012 [45] A. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, 'Optically Active Metasurface with Non-Chiral Plasmonic Nanoantennas,' Nano Letters, vol. 14, no. 8, pp. 4426-4431, 2014 [46] F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, 'Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,' ACS Nano, vol. 9, no. 4, pp. 4111-9, 2015 [47] N. A. Rubin, G. D’Aversa, P. Chevalier, Z. Shi, W. T. Chen, and F. Capasso, 'Matrix Fourier optics enables a compact full-Stokes polarization camera,' Science, vol. 365, no. 6448, p. eaax1839, 2019 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63216 | - |
dc.description.abstract | 偏振測量技術是一種常見的光學分析手段,偏振可以揭示一些原本不可見的特徵,例如結構應力、雙折射性、旋光性等,然而在偵測過程中往往只能記錄強度,卻丟失了相位的資訊,因此我們必須在量測前先使用極化分光器將正交極化光倆倆分離,為了確定全史托克斯參數(能完整描述任意光的偏振態),至少需要進行四種獨立的偏振測量,這使得光學系統的體積通常龐大。近年來人們透過對超穎表面適當的設計,可有效控制結構的相位響應以實現對電磁波的行為操控,並由於超穎表面為次波長尺寸,相較傳統光學元件展現了輕薄的優勢。
基於以上原因,本篇論文我們將利用相位梯度電漿子超穎表面設計兩個極化分光器,分別量測偏振態x/y和±45°,設計中心波長為730 nm,並且嘗試藉由積體共振單元的設計,利用其複雜的耦合機制達成高效率、寬頻的極化分光器,成功將x/y極化分光器的效率由50%提升至70%,頻寬由130 nm提升至280 nm;±45°極化分光器效率則由50%提升至60%,頻寬由125 nm提升至240 nm。我們進一步考慮了兩組極化分光器在y方向交替排列出現的高階繞射,為了解決這個問題,我們基於最佳化與傅氏光學之計算獲得只沿著x方向重新排列的相位分佈,並通過全波模擬驗證了此種解決方式依然能同時分離四組對應的偏振光,其總效率為50%且四種極化對比度高於90%。 | zh_TW |
dc.description.abstract | Measurement techniques involving polarization information is a common optical analysis method, which reveals invisible features, such as structural stress, birefringence, optical rotation and so on. However, only the intensity can be recorded without the phase information in the detection process. Therefore, we must use polarization beam splitter to separate the orthogonally polarized light during the measurement. To determine the full Stokes parameter, which can fully describe the polarization state of light, at least four individual polarization measurements are required. However, this makes the optical system usually bulky. In recent years, the technology of phase control has been realized through the appropriate design of metasurfaces, which enable us to fully manipulate the behavior of electromagnetic waves. As the metasurfaces are subwavelength, they exhibit ultra-thin and light-weight property compared to the traditional optical components.
Based on the above reasons, in this thesis we use the phase-gradient plasmonic metasurfaces to design two polarization beam splitters to measure x/y and ±45° polarization states at the design wavelength of 730 nm. We try to achieve a broadband and high-efficiency polarization beam splitter via the complex coupling mechanism of the multi-rod metasurfaces. We have successfully increased the efficiency of the x/y polarization beam splitter from 50% to 70% in a bandwidth from 130 nm to 280 nm. The efficiency of the ±45° polarization beam splitter has been enhanced from 50% to 60%, and the bandwidth was improved from 125 nm to 240 nm. In addition, we consider the higher-order diffraction of two polarization beam splitters arranged alternately in the y-direction. In order to solve this problem, we rearranged the phase distribution with a variation only along the x-direction through optimal designs based on the theory of Fourier optics. This solution is verified by the full-wave simulation that the rearranged phase polarization splitter can still separate four corresponding polarized lights simultaneously with a total efficiency of 50%, and four polarization contrasts are higher than 90%. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:28:46Z (GMT). No. of bitstreams: 1 ntu-109-R06941019-1.pdf: 17123635 bytes, checksum: 234fab3ae898b3339e4e66a08e8cad82 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Metasurfaces 1 1.2 Generalized Snell’s Laws 3 1.3 Grating theory 5 1.4 Phase modulation mechanism 7 1.5 Gap Surface Plasmon (GSP) Resonator 9 1.6 Motivations 12 1.7 Chapter Outline 13 Chapter 2 Theory and Research Method 15 2.1 Numerical Methods for Analysis of Metasurfaces by the CST Microwave Studio Software Simulator 15 2.2 Jones Matrix 17 2.3 Fourier Optics 18 2.3.1 Fresnel Diffraction 18 2.3.2 Fraunhofer Diffraction 21 2.4 Fast Fourier Transform (FFT) 22 2.5 Optimization Algorithm 25 2.6 Lagrange Multiplier 26 Chapter 3 Analysis of the Beam Splitter with Multi-Rod Metasurfaces 28 3.1 Single-Rod Metasurfaces 28 3.1.1 The Phase Coverage with the Different Gap Size, Thickness of the Gold Nanobrick, and the Fixed Period 28 3.1.2 Effects of Different Thicknesses on Reflection Spectrum 30 3.1.3 Effects of Different Thicknesses on Effective Refractive Index 32 3.2 Single-Rod Metasurfaces 34 3.2.1 Single-Rod Unit Cells 35 3.2.2 Single-Rod Supercells 42 3.3 Multi-Rod Metasurfaces 45 3.3.1 Resonance of Multi-Rod Metasurfaces 49 3.3.2 Multi-Rod Unit Cells 59 3.3.3 Multi-Rod Supercells 64 3.4 Comparison between Single-Rod and Multi-Rod Beam Splitters 67 Chapter 4 Phase Rearrangement Using Fourier Optics and Optimization 70 4.1 Phase Rearrangement Algorithm 72 4.2 Analysis of Optimization Results 75 4.3 Polarization Splitter by Using Calculated Phase Rearrangement 77 4.4 Comparison between Optimized and Simulated Results 80 Chapter 5 Conclusion 82 Bibliography 83 | |
dc.language.iso | en | |
dc.title | 以多重奈米柱表面電漿超穎介面設計寬頻高效率之極化分光器 | zh_TW |
dc.title | A High-Efficiency Broadband Polarization Splitter with Multi-Rod Plasmonic Metasurfaces | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蕭惠心(Hui-Hsin Hsiao) | |
dc.contributor.oralexamcommittee | 張世慧 | |
dc.subject.keyword | 電漿子超穎表面,極化分光器, | zh_TW |
dc.subject.keyword | Plasmonic metasurfaces,Polarization beam splitters, | en |
dc.relation.page | 87 | |
dc.identifier.doi | 10.6342/NTU202000788 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-05-11 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 16.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。