Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃青真
dc.contributor.authorTe-Yueh Linen
dc.contributor.author林德岳zh_TW
dc.date.accessioned2021-06-16T16:28:04Z-
dc.date.available2018-02-01
dc.date.copyright2013-02-01
dc.date.issued2013
dc.date.submitted2013-01-09
dc.identifier.citation呂佩諭、林育嬋 (2007)。探討山苦瓜改善血糖與血脂代謝異常可能活性成分,未出版。
呂佩諭 (2008)。篩選最具改善糖尿病前期患者血糖、血脂異常之苦瓜品系,未出版。
黃婷妮 (2010)。山苦瓜萃物暨其區分物之腸泌素效應。國立台灣大學生化科技學系碩士論文。
徐瑨 (2011)。自山苦瓜單離植物雌激素及其化學鑑定與生物活性探討。國立台灣大學生化科技學系博士論文。
周怡君 (2010)。以脂肪與肌肉細胞模式評估山苦瓜水萃物暨其區分物對細胞汲取葡萄糖之影響與相關機制探討。國立台灣大學生化科技學系碩士論文。
蔡崇煌、陳靖棻、蔡新聲、黃青真 (2010)。苦瓜於血糖控制之成效與安全性回顧。台灣營養學會雜誌第 35 卷第 3 期,第 115-126 頁。
楊惟蒂 (2010)。山苦瓜水萃物祭旗區分物對肝細胞汲取葡萄糖及胰島 beta 細胞分泌胰島素之影響。國立台灣大學生化科技學系碩士論文。
Ahmed, I. et al. (1998). 'Effects of Momordica charantia fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat.' Diabetes Res Clin Pract 40(3): 145-151.
Ahmad, N. et al. (1999). 'Effect of Momordica charantia (Karolla) extracts on fasting and postprandial serum glucose levels in NIDDM patients.' Bangladesh Med Res Counc Bull 25(1): 11-13.
Ahmed, I. et al. (2004). 'Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat.' Mol Cell Biochem 261(1-2): 63-70.
Ahmed, I. et al. (2001). 'Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats.' Diabetes Res Clin Pract 51(3): 155-161.
Baldwa, V. S. et al. (1977). 'Clinical trial in patients with diabetes mellitus of an insulin-like compound obtained from plant source.' Ups J Med Sci 82(1): 39-41.
Barnes, S. (2010). 'The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products.' Lymphat Res Biol 8(1): 89-98.
Bhatia, Y. et al. (2002). 'Microbial beta-glucosidases: cloning, properties, and applications.' Crit Rev Biotechnol 22(4): 375-407.
Brennan, V. C. et al. (2012). 'Bitter melon (Momordica charantia) extract suppresses adrenocortical cancer cell proliferation through modulation of the apoptotic pathway, steroidogenesis, and insulin-like growth factor type 1 receptor/RAC-alpha serine/threonine-protein kinase signaling.' J Med Food 15(4): 325-334.
Cakici, I. et al. (1994). 'Hypoglycaemic effect of Momordica charantia extracts in normoglycaemic or cyproheptadine-induced hyperglycaemic mice.' J Ethnopharmacol 44(2): 117-121.
Chandrasekar, B. et al. (1989). 'Blood sugar lowering potentiality of selected Cucurbitaceae plants of Indian origin.' Indian J Med Res 90: 300-305.
Chang, C. I. et al. (2006). 'Cucurbitane-type triterpenoids from Momordica charantia.' J Nat Prod 69(8): 1168-1171.
Chaturvedi, P. (2012). 'Antidiabetic potentials of Momordica charantia: multiple mechanisms behind the effects.' J Med Food 15(2): 101-107.
Chaturvedi, P. et al. (2004). 'Effect of Momordica charantia on lipid profile and oral glucose tolerance in diabetic rats.' Phytother Res 18(11): 954-956.
Chen, J. C. et al. (2005). 'Cucurbitacins and cucurbitane glycosides: structures and biological activities.' Nat Prod Rep 22(3): 386-399.
Chen, J. C. et al. (2009). 'Kuguacins F-S, cucurbitane triterpenoids from Momordica charantia.' Phytochemistry 70(1): 133-140.
Cheng, H. L. et al. (2008). 'A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase.' J Agric Food Chem 56(16): 6835-6843.
Cheng, H. L. et al. (2012). 'EMCD, a hypoglycemic triterpene isolated from Momordica charantia wild variant, attenuates TNF-alpha-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner.' Eur J Pharmacol.
Donya, A. et al. (2007). 'Effects of processing methods on the proximate composition and momordicosides K and L content of bitter melon vegetable.' J Agric Food Chem 55(14): 5827-5833.
Fang, E. F. and T. B. Ng (2011). 'Bitter gourd (Momordica charantia) is a cornucopia of health: a review of its credited antidiabetic, anti-HIV, and antitumor properties.' Curr Mol Med 11(5): 417-436.
.
Fang, E. F. et al. (2012). 'Momordica Charantia lectin, a type II ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo.' Cancer Prev Res (Phila) 5(1): 109-121.
Fernandes, N. P. et al. (2007). 'An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract.' BMC Complement Altern Med 7: 29.
Fuangchan, A. et al. (2011). 'Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients.' J Ethnopharmacol 134(2): 422-428.
Graves-Herring, J. E. and W. R. Boone (2009). 'Blastocyst rate and live births from vitrification and slow-cooled two-cell mouse embryos.' Fertil Steril 91(3): 920-924.
Grover, J. K. et al. (2001). 'Traditional Indian anti-diabetic plants attenuate progression of renal damage in streptozotocin induced diabetic mice.' J Ethnopharmacol 76(3): 233-238.
Harinantenaina, L. et al. (2006). 'Momordica charantia constituents and antidiabetic screening of the isolated major compounds.' Chem Pharm Bull (Tokyo) 54(7): 1017-1021.
Harinder P.S. Makkar et al. (2007). 'Plant Secondary Metabolites.'
Hishasi Matsuda et al. (1999). 'Structure-related inhibitory activity of oleanolic acid glycosides on gastric emptying in mice.' Bioorganic & Medicinal Chemisry 7(2): 323-327.
Hsu, C. et al. (2011). 'Isolation and identification of cucurbitane-type triterpenoids with partial agonist/antagonist potential for estrogen receptors from Momordica charantia.' J Agric Food Chem 59(9): 4553-4561.
Iwashita K. et al. (1998). 'Purification and characterization of extracellular and cell wall bound beta-glucosidases from Aspergillus kawachii.' Biosci Biotechnol Biochem 62(10): 1938-1946.
Jian-Chao Chen et al. (2008). 'Eight new cuurbitane glycosides, kuguaglycosides A-H, from the root of Momordica charantia L.' Helvetica Chimica Acta 91(5): 920-929.
Jilka, C. et al. (1983). 'In vivo antitumor activity of the bitter melon (Momordica charantia).' Cancer Res 43(11): 5151-5155.
Kao, T. H. et al. (2008). 'Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography-mass spectrometry.' Anal Chim Acta 626(2): 200-211.
Kar, A. et al. (2003). 'Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats.' J Ethnopharmacol 84(1): 105-108.
Kedar, P. and C. H. Chakrabarti (1982). 'Effects of bittergourd (Momordica charantia) seed & glibenclamide in streptozotocin induced diabetes mellitus.' Indian J Exp Biol 20(3): 232-235.
Keller, A. C. et al. (2011). 'Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro.' Phytomedicine 19(1): 32-37.
Ketudat Cairns, J. R. and A. Esen (2010). 'beta-Glucosidases.' Cell Mol Life Sci 67(20): 3389-3405.
Khanna, P. et al. (1981). 'Hypoglycemic activity of polypeptide-p from a plant source.' J Nat Prod 44(6): 648-655.
Krawinkel, M. B. and G. B. Keding (2006). 'Bitter Gourd (Momordica charantia): A Dietary Approach to Hyperglycemia.' Nutr Rev 64(7): 331-337.
Lee-Huang, S. et al. (1995). 'Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon.' Gene 161(2): 151-156.
Lee-Huang, S. et al. (1995). 'Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31.' Proc Natl Acad Sci U S A 92(19): 8818-8822.
Leung, L. et al. (2009). 'Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review.' Br J Nutr 102(12): 1703-1708.
Leung, S. O. et al. (1987). 'The immunosuppressive activities of two abortifacient proteins isolated from the seeds of bitter melon (Momordica charantia).' Immunopharmacology 13(3): 159-171.
Li, Q. Y. et al. (2007). 'Cucurbitane triterpenoids from Momordica charantia.' Magn Reson Chem 45(6): 451-456.
Li, Y. et al. (2000). 'Acceleration of gastrointestinal transit by momordin Ic in mice: possible involvement of 5-hydroxytryptamine, 5-HT(2) receptors and prostaglandins.' Eur J Pharmacol 392(1-2): 71-77
Li, Y. Y. et al. (2005). 'Purification and partial characterization of beta-glucosidase from fresh leaves of tea plants (Camellia sinensis (L.) O. Kuntze).' Acta Biochim Biophys Sin (Shanghai) 37(6): 363-370.
Li, Y. et al. (2012). 'Application of high-speed counter-current chromatography coupled with a reverse micelle solvent system to separate three proteins from Momordica charantia.' J Chromatogr B Analyt Technol Biomed Life Sci 895-896: 77-82.
Liu, J. Q. et al. (2009). 'New cucurbitane triterpenoids and steroidal glycoside from Momordica charantia.' Molecules 14(12): 4804-4813.
Maicas, S. and J. J. Mateo (2005). 'Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review.' Appl Microbiol Biotechnol 67(3): 322-335.
Manabe, M. et al. (2003). 'Induction of anti-inflammatory responses by dietary Momordica charantia L. (bitter gourd).' Biosci Biotechnol Biochem 67(12): 2512-2517.
Mekuria, D. B. et al. (2005). 'Cucurbitane triterpenoid oviposition deterrent from Momordica charantia to the leafminer, Liriomyza trifolii.' Biosci Biotechnol Biochem 69(9): 1706-1710.
Mekuria, D. B. et al. (2006). 'Cucurbitane glucosides from Momordica charantia leaves as oviposition deterrents to the leafminer, Liriomyza trifolii.' Z Naturforsch C 61(1-2): 81-86.
Michael Wink. (2010) “Functions and Biotechnology of Plant Secondary Metabolites.”
Miura, T. et al. (2001). 'Hypoglycemic activity of the fruit of the Momordica charantia in type 2 diabetic mice.' J Nutr Sci Vitaminol (Tokyo) 47(5): 340-344.
Miura, T. et al. (2004). 'Suppressive activity of the fruit of Momordica charantia with exercise on blood glucose in type 2 diabetic mice.' Biol Pharm Bull 27(2): 248-250.
Murakami, T. et al. (2001). 'Medicinal foodstuffs. XXI. Structures of new cucurbitane-type triterpene glycosides, goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and new oleanane-type triterpene saponins, goyasaponins I, II, and III, from the fresh fruit of Japanese Momordica charantia L.' Chem Pharm Bull (Tokyo) 49(1): 54-63.
Nakamura, S. et al. (2006). 'Structures of new cucurbitane-type triterpenes and glycosides, karavilagenins and karavilosides, from the dried fruit of Momordica charantia L. in Sri Lanka.' Chem Pharm Bull (Tokyo) 54(11): 1545-1550.
Nerurkar, P. V. et al. (2011). 'Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation.' J Neuroinflammation 8: 64.
Ng, T. B. et al. (1986). 'Insulin-like molecules in Momordica charantia seeds.' J Ethnopharmacol 15(1): 107-117.
Ng, T. B. et al. (1987). 'Acid-ethanol extractable compounds from fruits and seeds of the bitter gourd Momordica charantia: effects on lipid metabolism in isolated rat adipocytes.' Am J Chin Med 15(1-2): 31-42.
Nhiem, N. X. et al. (2012). 'Inhibition of Nuclear Transcription Factor-kappaB and Activation of Peroxisome Proliferator-Activated Receptors in HepG2 Cells by Cucurbitane-Type Triterpene Glycosides from Momordica charantia.' J Med Food 15(4): 369-377.
Nhiem, N. X. et al. (2010). 'alpha-Glucosidase inhibition properties of cucurbitane-type triterpene glycosides from the fruits of Momordica charantia.' Chem Pharm Bull (Tokyo) 58(5): 720-724.
Ojewole, J. A. et al. (2006). 'Hypoglycaemic and hypotensive effects of Momordica charantia Linn (Cucurbitaceae) whole-plant aqueous extract in rats.' Cardiovasc J S Afr 17(5): 227-232.
Park, C. S. et al. (2010). 'Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases.' Appl Microbiol Biotechnol 87(1): 9-19.
Platel, K. and K. Srinivasan (1997). 'Plant foods in the management of diabetes mellitus: vegetables as potential hypoglycaemic agents.' Nahrung 41(2): 68-74
Pitipanapong, J. et al. (2007). 'New approach for extraction of charantin from Momordica charantia with pressurized liquid extraction.' Separation and Purification Technology 52(3): 416-422.
Rathi, S. S. et al. (2002). 'The effect of Momordica charantia and Mucuna pruriens in experimental diabetes and their effect on key metabolic enzymes involved in carbohydrate metabolism.' Phytother Res 16(3): 236-243.
Ramalhete, C. et al. (2009). 'Cucurbitane-type triterpenoids from the African plant Momordica balsamina.' J Nat Prod 72(11): 2009-2013.
Rekha, C. R. and G. Vijayalakshmi (2011). 'Isoflavone phytoestrogens in soymilk fermented with beta-glucosidase producing probiotic lactic acid bacteria.' Int J Food Sci Nutr 62(2): 111-120.
Roffey, B. W. et al. (2007). 'Water extracts from Momordica charantia increase glucose uptake and adiponectin secretion in 3T3-L1 adipose cells.' J Ethnopharmacol 112(1): 77-84.
Rostagno, M. A. et al. (2009). 'Sample preparation for the analysis of isoflavones from soybeans and soy foods.' J Chromatogr A 1216(1): 2-29.
Sabira Begum et al. (1997). 'Triterpenes, a sterol and a monocyclic alcohol from Momordica charantia.' Phytochemistry 44(7): 1313-1320.
Sano, K. et al. (1975). 'Purification and properties of a beta-1,6-clucosidase from Flavobacterium.' Biochim Biophys Acta 377(2): 410-420.
Sarkar, S. et al. (1996). 'Demonstration of the hypoglycemic action of Momordica charantia in a validated animal model of diabetes.' Pharmacol Res 33(1): 1-4.
Senanayake, G. V. et al. (2012). 'Mechanisms underlying decreased hepatic triacylglycerol and cholesterol by dietary bitter melon extract in the rat.' Lipids 47(5): 495-503.
Sekar, D. S. et al. (2005). 'Antidiabetic activity of Momordica charantia seeds on streptozotocin induced diabetic rats.' Pharmazie 60(5): 383-387.
Singh, J. et al. (2011). 'Medicinal chemistry of the anti-diabetic effects of momordica charantia: active constituents and modes of actions.' Open Med Chem J 5(Suppl 2): 70-77.
Singh, N. et al. (2008). 'Effects of alcoholic extract of Momordica charantia (Linn.) whole fruit powder on the pancreatic islets of alloxan diabetic albino rats.' J Environ Biol 29(1): 101-106.
Song, X. et al. (2011). 'Comparison of three thermostable beta-glucosidases for application in the hydrolysis of soybean isoflavone glycosides.' J Agric Food Chem 59(5): 1954-1961.
Tan, M. J. et al. (2008). 'Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway.' Chem Biol 15(3): 263-273.
Thuy T. Pham and Nagendra P. Shah. (2009). ' Hydrolysis of isoflavone glycosides in soy milk by β-galactosidase and β-glucosidase.' J. Food Biochem 33(1): 38-60.
Valls, J. et al. (2009). 'Advanced separation methods of food anthocyanins, isoflavones and flavanols.' J Chromatogr A 1216(43): 7143-7172.
Wang, B. L. et al. (2011). 'Gene cloning and expression of a novel hypoglycaemic peptide from Momordica charantia.' J Sci Food Agric 91(13): 2443-2448.
Wang, F. J. et al. (2012). 'Tandem multimer expression and preparation of hypoglycemic peptide MC6 from Momordica charantia in Escherichia coli.' Appl Biochem Biotechnol 166(3): 612-619.
Wang, X. et al. (2012). 'Structures of New Triterpenoids and Cytotoxicity Activities of the Isolated Major Compounds from the Fruit of Momordica charantia L.' J Agric Food Chem 60(15): 3927-3933.
Wei, Y. et al. (2011). 'Purification and characterization of a novel and unique ginsenoside Rg1-hydrolyzing beta-D-glucosidase from Penicillium sclerotiorum.' Acta Biochim Biophys Sin (Shanghai) 43(3): 226-231.
Welihinda, J. et al. (1986). 'Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes.' J Ethnopharmacol 17(3): 277-282.
William D. Torres (2001). Momordica charantia Linn. (Family: Cucurbitaceae) - Chemistry & Pharmacology (unpublished).
Virdi, J. et al. (2003). 'Antihyperglycemic effects of three extracts from Momordica charantia.' J Ethnopharmacol 88(1): 107-111.
Xie, W. and L. Du (2011). 'Diabetes is an inflammatory disease: evidence from traditional Chinese medicines.' Diabetes Obes Metab 13(4): 289-301.
Yama, O. E. et al. (2010). 'Effect of methanolic seed extract of Momordica charantia on body weight and serum cholesterol level of male Sprague-Dawley rats.' Nig Q J Hosp Med 20(4): 209-213.
Yeh, G. Y. et al. (2003). 'Systematic review of herbs and dietary supplements for glycemic control in diabetes.' Diabetes Care 26(4): 1277-1294.
Yin, J. et al. (2008). 'Traditional chinese medicine in treatment of metabolic syndrome.' Endocr Metab Immune Disord Drug Targets 8(2): 99-111.
Zhao, Y. Y. et al. (2010). 'Cytotoxic steroids from Polyporus umbellatus.' Planta Med 76(15): 1755-1758.
Zhang, J. et al. (2012). 'Cucurbitane triterpenoids from the leaves of Momordica charantia, and their cancer chemopreventive effects and cytotoxicities.'
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63203-
dc.description.abstract糖尿病是目前影響人類健康重大的公共醫藥衛生問題,此種代謝性疾病常導致許多嚴重併發症。文獻指出苦瓜具有改善血糖調節之潛力,其中所富含之三萜類,為近年研究所聚焦之活性化合物,尤其是苷元形式的三萜類化合物。唯此類化合物多數以帶一個或多個醣基之型式存在於苦瓜中。本研究目的首在探討山苦瓜中去醣基水解酶之酵素活性與特性,並建立其蛋白質純化方法;其次在探討山苦瓜經過不同條件酵素處理所得樣品中三萜類化合物之譜型。
在固定條件下,山苦瓜蛋白質粗抽物其 β-glucosidase 活性表現優於cellu- lase及a-glucosidase。選定β-glucosidase 經由硫酸銨沉澱、離子交換與膠體過濾等步驟,進行蛋白質純化。取電泳分離之蛋白質色帶進行LC-MS/MS分析,預測片段之序列。其次,利用 UPLC-MS 分析預測,山苦瓜萃取物於外加酵素水解所得樣品中各種三萜類化合物之譜型。分析山苦瓜以冷水 (CWE) 於室溫萃取之樣品,發現能夠產生許多帶醣與不帶醣之三萜類化合物,顯示萃取過程中山苦瓜內源性酵素有發生作用。接著探討三種市售去糖基酵素 amyloglucosidase (ag), β-glucosidase (bg) 與 cellulase (cel) 分別 (ag, bg, cel) 或組合cel+bg (cb) 對於山苦瓜萃取物之作用,將這些酵素分別添加於苦瓜之甲醇或正丁醇萃取物進行水解反應,並取其乙酸乙酯區分物進行分析。結果顯示,甲醇萃物以 amyloglucosidase (ag) 的酵素水解,在質譜分析結果顯示能夠產生較多的三萜類化合物。基於未加酵素之對照組似亦有較多的三萜類化合物,乃依對照組反應條件進行山苦瓜粉萃取,即分成:中溫 (MWE, 37℃) 或高溫 (HWE, 60℃),又各分成是否調整 pH 值以及外加酵素與否等處理,嘗試找出最簡便經濟且能促進苦瓜內源性酵素活性,提高山苦瓜水萃取物中苷元形式的三萜類化合物含量之處理條件。結果以 HWEa 與 MWE 能夠產生較多的三萜類化合物,外加酵素於這些水萃取物中,並未能夠產生更多的三萜類化合物。
綜之,本研究是第一個確認苦瓜具有β-glucosidase, cellulase , α-glucosidase 等酵素活性,並初步建立了β-glucosidase 純化方法。也發現天然之花蓮四號山苦瓜可能含有 3β-hydroxycucurbita-5(10),6,22(E),24-tetraen-19-al, (23E)-cucurbita- 5, 23, 25-triene-3,7-dione, 5β,19-epoxy-3β,25-dihydroxycucurbita-6,23(E)-diene, Goyagly- cosides (151), (23E)-5β,19-epoxycucurbita-6,23-diene-3β,25-diol, Kara- vilagenin E, oleanolic acid, 25-oxo-27-normomordicoside L, momordicosed F2 及 momordico- side I 等三萜類化合物。以水進行山苦瓜萃取時,在水萃取物中外加酵素的去醣基效果並不顯著,可能是需要外加更多的酵素,才能有顯著的效果;其中以 HWEa (高溫加酸水萃取處理) 與 MWE (中溫水萃取處理) 兩種處理方法能夠更簡便經濟地產生較多苷元形式的三萜類化合物。也可能這種處理能夠藉由促進山苦瓜內源性酵素的活性,產生更多的三萜類化合物,進一步提升山苦瓜降血糖的活性。
zh_TW
dc.description.abstractType 2 Diabetes mellitus has been an increasing public health concern. This meta- bolic disorder diagnosed by hyperglycemia could lead to serious complications. Bitter melon (Momordica Charantia, BM) has been shown to improve glucose dys-regula- tion and recent reports focused on its triterpenoids, especially aglycone forms, as ac- tive compounds. This study aims to examine endogeneous deglycosidation enzyme activity of BM, to isolate and characterize β-glucosidase enzyme from BM, and to ex- amine the triterpenoids profiles in BM extracts subjected to deglycosidation enzyme treatments.
Using specific substrates and a fixed assay condition, BM extract showed acti- vity of β-glucosidase, cellulase and a-glucosidase. The β-glucosidase enzyme of BM was purified by ammonium sulfate precipitation, ion exchange and gel filtration chromatography. The isolated protein band from electrophoresis was analyzed by LC-MS/MS and partial sequence predicted. Furthermore, the triterpenoids profiles of BG extracts subjected to deglycosilation enzyme treatments were examined using UPLC and QTOF-MS and predicted by the software based on a self-constructed BM triterpenoid database. When analyzing the BG water extract prepared by cold water (CWE), we found out that much triterpenoids (including aglycons and glycosides) were found in CWE, suggesting the BM endogenous enzyme might be effective. Next, three commercial enzymes, amyloglu- sidase (ag), β-glucosidase (bg), and cellulase (cel) were used to treat methanol or butanol extracts of BM, individually (ag, bg, cel) or cel + bg successively (cb), and the ethyl acetate (EA) partition of extracts analyzed. Among the enzyme treated samples, the methanol extracts treated with amyloglucosidase (ag) showed highest amount of triterpenoids. As some of the control samples (no enzyme treatment in incubations) also had high triterpenoid profile, water extracts were further prepared at medium (MWE, 37℃) or high temperature (HWE, 60℃) with or without the adjust- ment of pH (pH = 5), and with or without exogeneous enzymes (ag, cb). Analysis of the EA extracts of these samples revealed that MWE and HWE had higher triterpe- noids. Exogeneous enzymes did not increase triterpenoids.
This is the first study that demonstrated glycoside hydrolase activities in BM, and the β-glucosidase was partially purified. Also the following triterpenoids were predicted in the Hualien No.4 wild bitter melon used in this study. 3β-hydroxycucur- bita-5(10),6,22(E),24-tetraen-19-al, (23E)-cucurbita-5,23,25-triene-3,7-dione, 5β,19- epoxy-3β,25-dihydroxycucurbita-6,23(E)-diene, Goyaglycosides (151), (23E)-5β,19- epoxycucurbita-6,23-diene-3β,25-diol, Karavilagenin E, oleanolic acid, 25-oxo-27- normomordicoside L, momordicosed F2 and momordicoside I. Extraction method of HWEa and MWE might be a good choice to obtain more aglycone triterpenoids.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:28:04Z (GMT). No. of bitstreams: 1
ntu-102-R99b22043-1.pdf: 3608250 bytes, checksum: 52f2115264c1bd76d3e0d5022b2bbebd (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要 i
英文摘要 iii
縮寫對照表 v
總目錄 I
圖目錄 IV
表目錄 VI
第一章 緒論 1
第一節 研究動機與目的 1
第二節 文獻回顧 4
一、糖尿病前期 (prediabetes) 與糖尿病 (diabetes mellitus) 4
二、苦瓜 4
三、三萜類化合物 (triterpenes) 8
四、酵素水解 10
(一) β-glucosidase 特性與作用機制 10
(二) 其他去醣基酵素之應用 11
第三節 研究目的與實驗設計 25
一、研究目的 25
二、實驗設計 25
第二章 山苦瓜內源性酵素性質之探討 27
第一節 前言 27
第二節 材料與方法 29
一、實驗材料與試劑 29
二、儀器設備 29
三、實驗方法 30
(一) 花蓮四號山苦瓜β-glucosidase 活性測試 30
1. 酵素活性條件最適化測試 30
2. 不同品系山苦瓜果肉與種子中β-glucosidase活性比較 32
(二) 花蓮四號山苦瓜β-glucosidase 純化分離方法之建立與質譜分析 34
1. 蛋白質純化方法 34
(1) 粗抽取 (XT) 及硫酸銨沉澱 (AS) 34
(2) 離子交換法 (ION) 34
(3) 膠體過濾法 (GEL) 34
A. 添加蛋白質標準品 34
B. 不添加蛋白質標準品 35
2. 蛋白質質譜分析與序列比對 35
3. β-glucosidase 活性試驗 36
(3) 酵素活性反映 36
(3) 標準曲線之製作 37
第三節 結果 38
一、花蓮四號山苦瓜β-glucosidase 活性測試 38
(一) 酵素活性條件最適化測試 38
1. 不同溫度反應的活性試驗 38
2. 不同體積比利的活性試驗 38
3. 不同 pH 值的反應基質液活性試驗 38
4. 不同反應時間的活性試驗 38
(二) 不同品系山苦瓜果肉與種子中β-glucosidase活性比較 38
(三) 酵素活性專一性測試 38
二、花蓮四號山苦瓜β-glucosidase 活性測試 38
(一) 蛋白質純化方法 39
(二) 質譜分析 39
第四節 討論 51
第五節 結論 54
第三章 山苦瓜萃取、酵素水解條件與三萜類化合物含量之探討 55
第一節 前言 55
第二節 材料與方法 57
一、實驗材料及試劑、儀器設備與資料分析處理軟體 57
(一) 薄層色層分析 (TLC) 57
(二) 減壓濃縮機 57
(三) UPLC-MS 57
(四) 有機溶劑 57
(五) 酵素 57
(六) 其他樣品 57
(七) 標準品 58
二、山苦瓜萃取 (山苦瓜由花蓮農業改良場提供) 58
(一) 室溫冷水萃取與室溫滾水萃取樣品製備 58
(二) 甲醇及正丁醇萃取物暨酵素水解各類樣品製備 59
(三) 中溫水萃取物與高溫水萃取物暨酵素水解各類樣品製備 60
三、化學成分分離鑑定流程與樣品製備 62
第三節 結果 63
一、標準品分析結果 63
二、甲醇及正丁醇萃取物既酵素水解樣品分析結果之比較 63
(一) 甲醇萃取物 63
1. PCA 統計分析結果、層析(UPLC) 與薄層色層分析 (TLC) 結果 63
2. Target analysis 63
3. Profile analysis 64
(二) 正丁醇萃取物 64
1. PCA 統計分析結果、層析(UPLC) 與薄層色層分析 (TLC) 結果 64
2. Target analysis 65
3. Profile analysis 65
三、各類水萃取樣品分析結果比較 65
(一) PCA 統計分析結果 65
(二) Target analysis 66
四、綜合比較 66
第四節 討論 88
第五節 結論 92
第四章 綜合討論與總結論 93
第一節 綜合討論 93
第二節 總結論 96
第五章 參考文獻 97
第六章 附錄 111
dc.language.isozh-TW
dc.title山苦瓜萃取暨其酵素水解最佳化與三萜類成分之探討zh_TW
dc.titleOptimization of bitter melon processing including
enzyme hydrolysis and investigation of triterpenoids in
Momordica charantia
en
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林璧鳳,李昆達,蕭明熙,楊健志
dc.subject.keyword山苦瓜,降血糖,三?類,酵素水解,β-glucosidase,zh_TW
dc.subject.keywordMomordica charantia,bitter melon,bitter gourd,hypoglycemic,triterpenoids,enzyme hydrolysis,β-glucosidase,en
dc.relation.page167
dc.rights.note有償授權
dc.date.accepted2013-01-11
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
3.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved