Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63200
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張芳嘉(Fang-Chia Chang) | |
dc.contributor.author | Yi-Tse Hsiao | en |
dc.contributor.author | 蕭逸澤 | zh_TW |
dc.date.accessioned | 2021-06-16T16:27:52Z | - |
dc.date.available | 2013-02-01 | |
dc.date.copyright | 2013-02-01 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-01-11 | |
dc.identifier.citation | 1 Larzelere, M. M. & Jones, G. N. Stress and health. Primary care 35, 839-856, doi:10.1016/j.pop.2008.07.011 (2008).
2 McEwen, B. S. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism: clinical and experimental 54, 20-23, doi:10.1016/j.metabol.2005.01.008 (2005). 3 Drake, C. L., Roehrs, T. & Roth, T. Insomnia causes, consequences, and therapeutics: an overview. Depression and anxiety 18, 163-176, doi:10.1002/da.10151 (2003). 4 American Psychiatric Association. Diagnostic and statistical manual of mental disorders : DSM-IV-TR. (American Psychiatric Association, 2000). 5 Ohayon, M. M. Relationship between chronic painful physical condition and insomnia. Journal of psychiatric research 39, 151-159, doi:10.1016/j.jpsychires.2004.07.001 (2005). 6 Perlis, M. L., Giles, D. E., Mendelson, W. B., Bootzin, R. R. & Wyatt, J. K. Psychophysiological insomnia: the behavioural model and a neurocognitive perspective. Journal of sleep research 6, 179-188 (1997). 7 Ford, D. E. & Kamerow, D. B. Epidemiologic study of sleep disturbances and psychiatric disorders. An opportunity for prevention? JAMA : the journal of the American Medical Association 262, 1479-1484 (1989). 8 Mechoulam, R., Parker, L. A. & Gallily, R. Cannabidiol: an overview of some pharmacological aspects. Journal of clinical pharmacology 42, 11S-19S (2002). 9 Guimaraes, F. S., Chiaretti, T. M., Graeff, F. G. & Zuardi, A. W. Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology 100, 558-559 (1990). 10 Pickens, J. T. Sedative activity of cannabis in relation to its delta'-trans-tetrahydrocannabinol and cannabidiol content. British journal of pharmacology 72, 649-656 (1981). 11 Crippa, J. A. et al. Effects of cannabidiol (CBD) on regional cerebral blood flow. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 29, 417-426, doi:10.1038/sj.npp.1300340 (2004). 12 Buzsaki, G. Theta oscillations in the hippocampus. Neuron 33, 325-340 (2002). 13 Engin, E., Stellbrink, J., Treit, D. & Dickson, C. T. Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience 157, 666-676, doi:10.1016/j.neuroscience.2008.09.037 (2008). 14 McNaughton, N., Kocsis, B. & Hajos, M. Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function? Behavioural pharmacology 18, 329-346, doi:10.1097/FBP.0b013e3282ee82e3 (2007). 15 Gray, J. A. The neuropsychology of anxiety : an enquiry into the functions of the septo-hippocampal system. (Oxford University Press, 2000). 16 McNaughton, N. & Gray, J. A. Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. Journal of affective disorders 61, 161-176 (2000). 17 Owens, M. J. & Nemeroff, C. B. Physiology and pharmacology of corticotropin-releasing factor. Pharmacological reviews 43, 425-473 (1991). 18 de Kloet, E. R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nature reviews. Neuroscience 6, 463-475, doi:10.1038/nrn1683 (2005). 19 Joels, M., Pu, Z., Wiegert, O., Oitzl, M. S. & Krugers, H. J. Learning under stress: how does it work? Trends in cognitive sciences 10, 152-158, doi:10.1016/j.tics.2006.02.002 (2006). 20 Berridge, C. W., Espana, R. A. & Vittoz, N. M. Hypocretin/orexin in arousal and stress. Brain research 1314, 91-102, doi:10.1016/j.brainres.2009.09.019 (2010). 21 de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences of the United States of America 95, 322-327 (1998). 22 Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573-585 (1998). 23 Nambu, T. et al. Distribution of orexin neurons in the adult rat brain. Brain research 827, 243-260 (1999). 24 Greco, M. A. & Shiromani, P. J. Hypocretin receptor protein and mRNA expression in the dorsolateral pons of rats. Brain research. Molecular brain research 88, 176-182 (2001). 25 Marcus, J. N. et al. Differential expression of orexin receptors 1 and 2 in the rat brain. The Journal of comparative neurology 435, 6-25 (2001). 26 Nattie, E. & Li, A. Respiration and autonomic regulation and orexin. Progress in brain research 198, 25-46, doi:10.1016/B978-0-444-59489-1.00004-5 (2012). 27 Bourgin, P. et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 7760-7765 (2000). 28 Xi, M. C., Morales, F. R. & Chase, M. H. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain research 901, 259-264 (2001). 29 Kuwaki, T. Orexin links emotional stress to autonomic functions. Autonomic neuroscience : basic & clinical 161, 20-27, doi:10.1016/j.autneu.2010.08.004 (2011). 30 Jaszberenyi, M., Bujdoso, E., Pataki, I. & Telegdy, G. Effects of orexins on the hypothalamic-pituitary-adrenal system. Journal of neuroendocrinology 12, 1174-1178 (2000). 31 Kuru, M. et al. Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroreport 11, 1977-1980 (2000). 32 Ida, T. et al. Possible involvement of orexin in the stress reaction in rats. Biochemical and biophysical research communications 270, 318-323, doi:10.1006/bbrc.2000.2412 (2000). 33 Zhu, L., Onaka, T., Sakurai, T. & Yada, T. Activation of orexin neurones after noxious but not conditioned fear stimuli in rats. Neuroreport 13, 1351-1353 (2002). 34 Russell, S. H. et al. The central effects of orexin-A in the hypothalamic-pituitary-adrenal axis in vivo and in vitro in male rats. Journal of neuroendocrinology 13, 561-566 (2001). 35 Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437-451 (1999). 36 Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365-376 (1999). 37 Siegel, J. M. Hypocretin (orexin): role in normal behavior and neuropathology. Annual review of psychology 55, 125-148, doi:10.1146/annurev.psych.55.090902.141545 (2004). 38 Willie, J. T. et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 38, 715-730 (2003). 39 Mieda, M. et al. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 6518-6526, doi:10.1523/JNEUROSCI.6506-10.2011 (2011). 40 Scammell, T. E. & Winrow, C. J. Orexin receptors: pharmacology and therapeutic opportunities. Annual review of pharmacology and toxicology 51, 243-266, doi:10.1146/annurev-pharmtox-010510-100528 (2011). 41 Hondo, M. et al. Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states. Acta Physiol (Oxf) 198, 287-294, doi:10.1111/j.1748-1716.2009.02032.x (2010). 42 Niwa, M. et al. Effect of JTT-501 on net hepatic glucose balance and peripheral glucose uptake in alloxan-induced diabetic dogs. Metabolism: clinical and experimental 49, 862-867, doi:10.1053/meta.2000.6752 (2000). 43 Ripley, B., Fujiki, N., Okura, M., Mignot, E. & Nishino, S. Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiology of disease 8, 525-534, doi:10.1006/nbdi.2001.0389 (2001). 44 Mignot, E. et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Archives of neurology 59, 1553-1562 (2002). 45 Ebrahim, I. O. et al. Hypocretin (orexin) deficiency in narcolepsy and primary hypersomnia. Journal of neurology, neurosurgery, and psychiatry 74, 127-130 (2003). 46 Yoshida, Y., Fujiki, N., Maki, R. A., Schwarz, D. & Nishino, S. Differential kinetics of hypocretins in the cerebrospinal fluid after intracerebroventricular administration in rats. Neuroscience letters 346, 182-186 (2003). 47 Horvath, T. L. & Gao, X. B. Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Cell metabolism 1, 279-286, doi:10.1016/j.cmet.2005.03.003 (2005). 48 Saper, C. B., Cano, G. & Scammell, T. E. Homeostatic, circadian, and emotional regulation of sleep. The Journal of comparative neurology 493, 92-98, doi:10.1002/cne.20770 (2005). 49 Prober, D. A., Rihel, J., Onah, A. A., Sung, R. J. & Schier, A. F. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 13400-13410, doi:10.1523/JNEUROSCI.4332-06.2006 (2006). 50 Petsche, H., Stumpf, C. & Gogolak, G. The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells. Electroencephalography and clinical neurophysiology 14, 202-211 (1962). 51 Gray, J. A. The neuropsychology of anxiety : an enquiry into the functions of the septo-hippocampal system. (Oxford University Press, 1982). 52 Gerashchenko, D., Salin-Pascual, R. & Shiromani, P. J. Effects of hypocretin-saporin injections into the medial septum on sleep and hippocampal theta. Brain research 913, 106-115 (2001). 53 McNaughton, N., Ruan, M. & Woodnorth, M. A. Restoring theta-like rhythmicity in rats restores initial learning in the Morris water maze. Hippocampus 16, 1102-1110, doi:10.1002/hipo.20235 (2006). 54 Bissiere, S. et al. Electrical synapses control hippocampal contributions to fear learning and memory. Science 331, 87-91, doi:10.1126/science.1193785 (2011). 55 Lader, M. H. Limitations on the use of benzodiazepines in anxiety and insomnia: are they justified? European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 9 Suppl 6, S399-405 (1999). 56 ElSohly, M. A. Marijuana and the Cannabinoids. (Humana Press, 2010). 57 Mechoulam, R., Shani, A., Edery, H. & Grunfeld, Y. Chemical basis of hashish activity. Science 169, 611-612 (1970). 58 Mechoulam, R. & Hanus, L. Cannabidiol: an overview of some chemical and pharmacological aspects. Part I: chemical aspects. Chemistry and physics of lipids 121, 35-43 (2002). 59 Ameri, A. The effects of cannabinoids on the brain. Prog Neurobiol 58, 315-348 (1999). 60 Bitencourt, R. M., Pamplona, F. A. & Takahashi, R. N. Facilitation of contextual fear memory extinction and anti-anxiogenic effects of AM404 and cannabidiol in conditioned rats. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 18, 849-859, doi:10.1016/j.euroneuro.2008.07.001 (2008). 61 Carlini, E. A. & Cunha, J. M. Hypnotic and antiepileptic effects of cannabidiol. Journal of clinical pharmacology 21, 417S-427S (1981). 62 Murillo-Rodriguez, E., Millan-Aldaco, D., Palomero-Rivero, M., Mechoulam, R. & Drucker-Colin, R. Cannabidiol, a constituent of Cannabis sativa, modulates sleep in rats. FEBS letters 580, 4337-4345, doi:10.1016/j.febslet.2006.04.102 (2006). 63 Monti, J. M. Hypnoticlike effects of cannabidiol in the rat. Psychopharmacology 55, 263-265 (1977). 64 Nicholson, A. N., Turner, C., Stone, B. M. & Robson, P. J. Effect of Delta-9-tetrahydrocannabinol and cannabidiol on nocturnal sleep and early-morning behavior in young adults. Journal of clinical psychopharmacology 24, 305-313 (2004). 65 Yi, P. L. et al. Serotonergic system in the central nucleus of amygdala mediates cannabidiol-induced sleep alteration. The Open Sleep Journal 1, 58-68 (2008). 66 Kramis, R., Vanderwolf, C. H. & Bland, B. H. Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Experimental neurology 49, 58-85 (1975). 67 Vanderwolf, C. H. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and clinical neurophysiology 26, 407-418 (1969). 68 Lisman, J. E. & Idiart, M. A. Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science 267, 1512-1515 (1995). 69 Raghavachari, S. et al. Gating of human theta oscillations by a working memory task. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 3175-3183 (2001). 70 Sainsbury, R. S., Heynen, A. & Montoya, C. P. Behavioral correlates of hippocampal type 2 theta in the rat. Physiology & behavior 39, 513-519 (1987). 71 Alreja, M. Excitatory actions of serotonin on GABAergic neurons of the medial septum and diagonal band of Broca. Synapse 22, 15-27, doi:10.1002/(SICI)1098-2396(199601)22:1<15::AID-SYN2>3.0.CO;2-L (1996). 72 Liu, W. & Alreja, M. Atypical antipsychotics block the excitatory effects of serotonin in septohippocampal neurons in the rat. Neuroscience 79, 369-382 (1997). 73 Leranth, C. & Vertes, R. P. Median raphe serotonergic innervation of medial septum/diagonal band of broca (MSDB) parvalbumin-containing neurons: possible involvement of the MSDB in the desynchronization of the hippocampal EEG. The Journal of comparative neurology 410, 586-598 (1999). 74 Srebro, B. & Lorens, S. A. Behavioral effects of selective midbrain raphe lesions in the rat. Brain research 89, 303-325 (1975). 75 Graeff, F. G. & Silveira Filho, N. G. Behavioral inhibition induced by electrical stimulation of the median raphe nucleus of the rat. Physiology & behavior 21, 477-484 (1978). 76 Grove, G., Coplan, J. D. & Hollander, E. The neuroanatomy of 5-HT dysregulation and panic disorder. The Journal of neuropsychiatry and clinical neurosciences 9, 198-207 (1997). 77 Andrade, T. G., Macedo, C. E., Zangrossi, H., Jr. & Graeff, F. G. Anxiolytic-like effects of median raphe nucleus lesion in the elevated T-maze. Behav Brain Res 153, 55-60, doi:10.1016/j.bbr.2003.10.036 (2004). 78 Marston, O. J. et al. Circadian and dark-pulse activation of orexin/hypocretin neurons. Molecular brain 1, 19, doi:10.1186/1756-6606-1-19 (2008). 79 Liu, R. J., van den Pol, A. N. & Aghajanian, G. K. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 9453-9464 (2002). 80 Forchetti, C. M. & Meek, J. L. Evidence for a tonic GABAergic control of serotonin neurons in the median raphe nucleus. Brain research 206, 208-212 (1981). 81 Chang, F. C. & Opp, M. R. Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. The American journal of physiology 275, R793-802 (1998). 82 Paxinos, G. & Watson, C. The rat brain in stereotaxic coordinates. (Academic Press, 1998). 83 Maru, E., Takahashi, L. K. & Iwahara, S. Effects of median raphe nucleus lesions on hippocampal EEG in the freely moving rat. Brain research 163, 223-234 (1979). 84 Bland, B. H. The physiology and pharmacology of hippocampal formation theta rhythms. Progress in neurobiology 26, 1-54 (1986). 85 Buzsaki, G., Vanderwolf, C. H. & Grastyan, E. Electrical activity of the archicortex. (Akademiai Kiado, 1985). 86 Vanderwolf, C. H. Neocortical and hippocampal activation relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine. J. Comp. Physiol. Psychol. 88, 300-323 (1975). 87 Sainsbury, R. S. & Montoya, C. P. The relationship between type 2 theta and behavior. Physiology & behavior 33, 621-626 (1984). 88 Sainsbury, R. S., Harris, J. L. & Rowland, G. L. Sensitization and hippocampal type 2 theta in the rat. Physiology & behavior 41, 489-493 (1987). 89 Stumpf, C., Petsche, H. & Gogolak, G. The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. II. The differential influence of drugs upon both the septal cell firing pattern and the hippocampus theta activity. Electroencephalography and clinical neurophysiology 14, 212-219 (1962). 90 Jackson, J., Dickson, C. T. & Bland, B. H. Median raphe stimulation disrupts hippocampal theta via rapid inhibition and state-dependent phase reset of theta-related neural circuitry. Journal of neurophysiology 99, 3009-3026, doi:10.1152/jn.00065.2008 (2008). 91 Hsiao, Y. T., Jou, S. B., Yi, P. L. & Chang, F. C. Activation of GABAergic pathway by hypocretin in the median raphe nucleus (MRN) mediates stress-induced theta rhythm in rats. Behav Brain Res 233, 224-231, doi:10.1016/j.bbr.2012.05.002 (2012). 92 Cruz, A. P., Frei, F. & Graeff, F. G. Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacology, biochemistry, and behavior 49, 171-176 (1994). 93 Yeung, M., Treit, D. & Dickson, C. T. A critical test of the hippocampal theta model of anxiolytic drug action. Neuropharmacology 62, 155-160, doi:10.1016/j.neuropharm.2011.06.011 (2012). 94 Condorelli, D. F., Belluardo, N., Trovato-Salinaro, A. & Mudo, G. Expression of Cx36 in mammalian neurons. Brain research. Brain research reviews 32, 72-85 (2000). 95 Muller, J. F., Mascagni, F. & McDonald, A. J. Coupled networks of parvalbumin-immunoreactive interneurons in the rat basolateral amygdala. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 7366-7376, doi:10.1523/JNEUROSCI.0899-05.2005 (2005). 96 Buhl, D. L., Harris, K. D., Hormuzdi, S. G., Monyer, H. & Buzsaki, G. Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 1013-1018 (2003). 97 Pan, W. X. & McNaughton, N. The medial supramammillary nucleus, spatial learning and the frequency of hippocampal theta activity. Brain research 764, 101-108 (1997). 98 Woodnorth, M. A. & McNaughton, N. Similar effects of medial supramammillary or systemic injection of chlordiazepoxide on both theta frequency and fixed-interval responding. Cognitive, affective & behavioral neuroscience 2, 76-83 (2002). 99 Bjorklund, A., Falck, B. & Stenevi, U. Classification of monoamine neurones in the rat mesencephalon: distribution of a new monoamine neurone system. Brain research 32, 269-285 (1971). 100 Belin, M. F. et al. GABA-accumulating neurons in the nucleus raphe dorsalis and periaqueductal gray in the rat: a biochemical and radioautographic study. Brain research 170, 279-297 (1979). 101 Maloney, K. J., Mainville, L. & Jones, B. E. Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 3057-3072 (1999). 102 Wang, Q. P., Ochiai, H. & Nakai, Y. GABAergic innervation of serotonergic neurons in the dorsal raphe nucleus of the rat studied by electron microscopy double immunostaining. Brain research bulletin 29, 943-948 (1992). 103 Sherin, J. E., Elmquist, J. K., Torrealba, F. & Saper, C. B. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 4705-4721 (1998). 104 Wang, R. Y. & Aghajanian, G. K. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science 197, 89-91 (1977). 105 Kinney, G. G., Kocsis, B. & Vertes, R. P. Injections of muscimol into the median raphe nucleus produce hippocampal theta rhythm in the urethane anesthetized rat. Psychopharmacology 120, 244-248 (1995). 106 Wu, M. et al. Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 7754-7765 (2002). 107 Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nature reviews. Neuroscience 10, 397-409, doi:10.1038/nrn2647 (2009). 108 Lupien, S. J., McEwen, B. S., Gunnar, M. R. & Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature reviews. Neuroscience 10, 434-445, doi:10.1038/nrn2639 (2009). 109 Baglioni, C., Spiegelhalder, K., Lombardo, C. & Riemann, D. Sleep and emotions: a focus on insomnia. Sleep medicine reviews 14, 227-238, doi:10.1016/j.smrv.2009.10.007 (2010). 110 Pawlyk, A. C., Morrison, A. R., Ross, R. J. & Brennan, F. X. Stress-induced changes in sleep in rodents: models and mechanisms. Neuroscience and biobehavioral reviews 32, 99-117, doi:10.1016/j.neubiorev.2007.06.001 (2008). 111 Cui, R., Li, B., Suemaru, K. & Araki, H. Differential effects of psychological and physical stress on the sleep pattern in rats. Acta medica Okayama 61, 319-327 (2007). 112 Sanford, L. D., Yang, L., Wellman, L. L., Liu, X. & Tang, X. Differential effects of controllable and uncontrollable footshock stress on sleep in mice. Sleep 33, 621-630 (2010). 113 Maclean, R. R. & Datta, S. The relationship between anxiety and sleep-wake behavior after stressor exposure in the rat. Brain research 1164, 72-80, doi:10.1016/j.brainres.2007.06.034 (2007). 114 Yang, L., Wellman, L. L., Tang, X. & Sanford, L. D. Effects of corticotropin releasing factor (CRF) on sleep and body temperature following controllable footshock stress in mice. Physiology & behavior, doi:10.1016/j.physbeh.2011.05.025 (2011). 115 Hsiao, Y. T., Yi, P. L., Li, C. L. & Chang, F. C. Effect of cannabidiol on sleep disruption induced by the repeated combination tests consisting of open field and elevated plus-maze in rats. Neuropharmacology, doi:10.1016/j.neuropharm.2011.08.013 (2011). 116 Nishino, S., Ripley, B., Overeem, S., Lammers, G. J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39-40, doi:10.1016/S0140-6736(99)05582-8 (2000). 117 Avanzi, V., Castilho, V. M., de Andrade, T. G. & Brandao, M. L. Regulation of contextual conditioning by the median raphe nucleus. Brain research 790, 178-184 (1998). 118 Arpa, J. & De Andres, I. Re-examination of the effects of raphe lesions on the sleep/wakefulness cycle states in cats. Journal of sleep research 2, 96-102 (1993). 119 Jacobs, B. L. & Fornal, C. A. Activity of brain serotonergic neurons in the behaving animal. Pharmacological reviews 43, 563-578 (1991). 120 Meyer-Bernstein, E. L. & Morin, L. P. Electrical stimulation of the median or dorsal raphe nuclei reduces light-induced FOS protein in the suprachiasmatic nucleus and causes circadian activity rhythm phase shifts. Neuroscience 92, 267-279 (1999). 121 Muscat, L., Tischler, R. C. & Morin, L. P. Functional analysis of the role of the median raphe as a regulator of hamster circadian system sensitivity to light. Brain research 1044, 59-66, doi:10.1016/j.brainres.2005.02.083 (2005). 122 Sheu, Y. S., Nelson, J. P. & Bloom, F. E. Discharge patterns of cat raphe neurons during sleep and waking. Brain research 73, 263-276 (1974). 123 Chang, F. C. & Opp, M. R. Role of corticotropin-releasing hormone in stressor-induced alterations of sleep in rat. American journal of physiology. Regulatory, integrative and comparative physiology 283, R400-407, doi:10.1152/ajpregu.00758.2001 (2002). 124 Tang, X., Xiao, J., Liu, X. & Sanford, L. D. Strain differences in the influence of open field exposure on sleep in mice. Behav Brain Res 154, 137-147, doi:10.1016/j.bbr.2004.02.002 (2004). 125 Pawlyk, A. C., Jha, S. K., Brennan, F. X., Morrison, A. R. & Ross, R. J. A rodent model of sleep disturbances in posttraumatic stress disorder: the role of context after fear conditioning. Biological psychiatry 57, 268-277, doi:10.1016/j.biopsych.2004.11.008 (2005). 126 Lauer, C. J., Krieg, J. C., Garcia-Borreguero, D., Ozdaglar, A. & Holsboer, F. Panic disorder and major depression: a comparative electroencephalographic sleep study. Psychiatry research 44, 41-54 (1992). 127 Habukawa, M., Uchimura, N., Maeda, M., Kotorii, N. & Maeda, H. Sleep findings in young adult patients with posttraumatic stress disorder. Biological psychiatry 62, 1179-1182, doi:10.1016/j.biopsych.2007.01.007 (2007). 128 Hefez, A., Metz, L. & Lavie, P. Long-term effects of extreme situational stress on sleep and dreaming. The American journal of psychiatry 144, 344-347 (1987). 129 Lavie, P., Hefez, A., Halperin, G. & Enoch, D. Long-term effects of traumatic war-related events on sleep. The American journal of psychiatry 136, 175-178 (1979). 130 Ross, R. J. et al. Rapid eye movement sleep disturbance in posttraumatic stress disorder. Biological psychiatry 35, 195-202 (1994). 131 Breslau, N. et al. Sleep in lifetime posttraumatic stress disorder: a community-based polysomnographic study. Archives of general psychiatry 61, 508-516, doi:10.1001/archpsyc.61.5.508 (2004). 132 Dewasmes, G., Loos, N., Delanaud, S., Dewasmes, D. & Ramadan, W. Pattern of rapid-eye movement sleep episode occurrence after an immobilization stress in the rat. Neuroscience letters 355, 17-20 (2004). 133 Bonnet, C., Leger, L., Baubet, V., Debilly, G. & Cespuglio, R. Influence of a 1 h immobilization stress on sleep states and corticotropin-like intermediate lobe peptide (CLIP or ACTH18-39, Ph-ACTH18-39) brain contents in the rat. Brain research 751, 54-63 (1997). 134 Hobson, J. A., McCarley, R. W. & Wyzinski, P. W. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189, 55-58 (1975). 135 Aston-Jones, G. & Bloom, F. E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. The Journal of neuroscience : the official journal of the Society for Neuroscience 1, 876-886 (1981). 136 Yoshida, Y. et al. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. The European journal of neuroscience 14, 1075-1081 (2001). 137 Sakamoto, F., Yamada, S. & Ueta, Y. Centrally administered orexin-A activates corticotropin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus and central amygdaloid nucleus of rats: possible involvement of central orexins on stress-activated central CRF neurons. Regulatory peptides 118, 183-191, doi:10.1016/j.regpep.2003.12.014 (2004). 138 Sakurai, T. et al. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46, 297-308, doi:10.1016/j.neuron.2005.03.010 (2005). 139 Cavas, M., Beltran, D. & Navarro, J. F. Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats. Toxicology letters 157, 221-232, doi:10.1016/j.toxlet.2005.02.003 (2005). 140 Zhu, Y. et al. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. Journal of pharmacological sciences 92, 259-266 (2003). 141 Sutcliffe, J. G. & de Lecea, L. The hypocretins: setting the arousal threshold. Nature reviews. Neuroscience 3, 339-349, doi:10.1038/nrn808 (2002). 142 American Psychiatric Press. Diagnostic and statistical manual of mental disorders. 3rd edn, Vol. 3rd (American Psychiatric Press, 1994). 143 Mellman, T. A., Bustamante, V., Fins, A. I., Pigeon, W. R. & Nolan, B. REM sleep and the early development of posttraumatic stress disorder. The American journal of psychiatry 159, 1696-1701 (2002). 144 Hungs, M. & Mignot, E. Hypocretin/orexin, sleep and narcolepsy. BioEssays : news and reviews in molecular, cellular and developmental biology 23, 397-408, doi:10.1002/bies.1058 (2001). 145 Kilduff, T. S. & Peyron, C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends in neurosciences 23, 359-365 (2000). 146 Hagan, J. J. et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proceedings of the National Academy of Sciences of the United States of America 96, 10911-10916 (1999). 147 Ohayon, M. M. & Roth, T. Place of chronic insomnia in the course of depressive and anxiety disorders. Journal of psychiatric research 37, 9-15 (2003). 148 Dagan, Y., Lavie, P. & Bleich, A. Elevated awakening thresholds in sleep stage 3-4 in war-related post-traumatic stress disorder. Biological psychiatry 30, 618-622 (1991). 149 Anderson, D. J., Noyes, R., Jr. & Crowe, R. R. A comparison of panic disorder and generalized anxiety disorder. The American journal of psychiatry 141, 572-575 (1984). 150 Horowitz, M. J., Wilner, N., Kaltreider, N. & Alvarez, W. Signs and symptoms of posttraumatic stress disorder. Archives of general psychiatry 37, 85-92 (1980). 151 Mellman, T. A. & Davis, G. C. Combat-related flashbacks in posttraumatic stress disorder: phenomenology and similarity to panic attacks. The Journal of clinical psychiatry 46, 379-382 (1985). 152 Neylan, T. C. et al. Sleep disturbances in the Vietnam generation: findings from a nationally representative sample of male Vietnam veterans. The American journal of psychiatry 155, 929-933 (1998). 153 Prut, L. & Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European journal of pharmacology 463, 3-33 (2003). 154 Choleris, E., Thomas, A. W., Kavaliers, M. & Prato, F. S. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neuroscience and biobehavioral reviews 25, 235-260 (2001). 155 Pellow, S., Chopin, P., File, S. E. & Briley, M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of neuroscience methods 14, 149-167 (1985). 156 Treit, D., Menard, J. & Royan, C. Anxiogenic stimuli in the elevated plus-maze. Pharmacology, biochemistry, and behavior 44, 463-469 (1993). 157 Ivinskis, A. A study of validity of open-field measures. Australian Journal of Psychology 22, 175-183 (1970). 158 Makino, J., Kato, K. & Maes, F. W. Temporal structure of open field behavior in inbred strains of mice. Japanese Psychological Research 33, 145-152 (1991). 159 Graeff, F. G., Netto, C. F. & Zangrossi, H., Jr. The elevated T-maze as an experimental model of anxiety. Neuroscience and biobehavioral reviews 23, 237-246 (1998). 160 Mechoulam, R. Marihuana chemistry. Science 168, 1159-1166 (1970). 161 Chevaleyre, V., Takahashi, K. A. & Castillo, P. E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annual review of neuroscience 29, 37-76, doi:10.1146/annurev.neuro.29.051605.112834 (2006). 162 Grotenhermen, F. Cannabinoids and the endocannabinoid system. Cannabinoids 1, 10-14 (2006). 163 Sanford, L. D., Tejani-Butt, S. M., Ross, R. J. & Morrison, A. R. Amygdaloid control of alerting and behavioral arousal in rats: involvement of serotonergic mechanisms. Archives italiennes de biologie 134, 81-99 (1995). 164 Koren, D., Arnon, I., Lavie, P. & Klein, E. Sleep complaints as early predictors of posttraumatic stress disorder: a 1-year prospective study of injured survivors of motor vehicle accidents. The American journal of psychiatry 159, 855-857 (2002). 165 Germain, A., Buysse, D. J. & Nofzinger, E. Sleep-specific mechanisms underlying posttraumatic stress disorder: integrative review and neurobiological hypotheses. Sleep medicine reviews 12, 185-195, doi:10.1016/j.smrv.2007.09.003 (2008). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63200 | - |
dc.description.abstract | 壓力影響生理和心理健康。許多因素(例如:生活環境和藥物治療)讓研究人員難以釐清壓力如何影響生理和心理健康。因此這篇實驗利用控制良好的環境和實驗動物(大鼠)來研究壓力引起的行為以及相關機制。我們研究神經傳遞物質:下丘泌素(hypocretin, hcrt)或稱食慾素(orexin)的壓力調控功能。論文中有三個研究主題:壓力造成腦波θ波的改變、壓力造成睡眠失調、以及大麻二酚(cannabidiol, CBD)減緩焦慮的機制。
Hcrt上升會造成壓力相關反應。腦波θ波是大鼠遭遇壓力時主要的腦波。Hcrt受體(hcrtR-1和hcrt-R-2)在抑制θ波的腦區—內中縫核(median raphe nucleus, MRN)相當豐富。這可能代表hcrt能調控壓力引起的θ波。在第一部分的實驗是釐清hcrt引發θ波之機轉和MRN在其中扮演的角色。我們的實驗結果顯示對大鼠足電刺激會增加θ波而hcrt受體拮抗劑(TCS1102)會抑制足電刺激引發的θ波。微量注射hcrt-1 (1 and 10 μg) 或 hcrt-2 (10 μg)到MRN中模擬了足電刺激升高θ波之作用。同時注射GABAA受體拮抗劑bicuculline至MRN可以阻斷hcrt或足電刺激引發的θ波。100 Hz的MRN電刺激也抑制了足電刺激的θ波。我們的資料顯示θ波和焦慮感正相關,所以我們再假設抑制θ波可以減緩焦慮。我們利用架高十字迷宮(elevated plus maze, EPM)來測量大鼠焦慮程度。θ波被bicuculline或MRN電刺激抑制後,大鼠進入EPM的open arm時間和比率增高;這些結果代表了壓力會引起hcrt的釋放,經過MRN中GABA神經,減緩了MRN抑制θ波的作用,最後造成θ波增加。除此之外,刺激MRN減少θ波後可減少大鼠焦慮。 壓力同時也是造成睡眠問題的主要原因之一。Hcrt可以增加醒覺,同時也是壓力神經傳遞物。另外,MRN同時調控恐懼反應和睡眠。不過壓力是否會造成hcrt在MRN增加而抑制了睡眠目前不是很了解。我們的結果顯示足電刺激抑制了快速動眼睡眠(rapid eye movement, REM)且微量注射TCS1102到MRN減緩了REM睡眠抑制。hcrt-1 (1 and 10 μg) 或 hcrt-2 (10 μg)注射到MRN模擬了足電刺激引起的睡眠改變。足電刺激也會使hcrt-1和hcrt-2在外側下視丘免疫陽性的神經細胞增加。而注射bicuculline抑制了足電刺激或者hcrt引起的REM睡眠減少。這些結果可能代表了hcrt在MRN中經由GABA神經而抑制REM睡眠。 CBD是大麻中活性主成分且有抗焦慮作用。影像學研究顯示CBD活化了杏仁核(amygdala)而有抗焦慮作用。不過CBD是否可以改善壓力造成的睡眠障礙並不清楚。因為焦慮的產生有時是因為有數天持續的壓力造成,所以我們利用連續四天重複合併測驗(repeated combination test, RCT)也就是50分鐘的曠野測試(open field, OF)接著10分鐘EPM。四天測驗中,大鼠在OF中心的時間以及EPM open arm的時間會漸漸越來越少。CBD注射到杏仁核中心核後(central nucleus of amygdale, CeA)增加了大鼠在OF中心和在EPM open arm的時間,代表了CBD有抗焦慮作用。RCT會抑制入眠後的一小時的非快速動眼睡眠(non-REM, NREM)和第4-10小時的REM睡眠。CBD改善了RCT造成的REM睡眠減少但是對NREM效果不顯著。實驗的結果顯示CBD藉由減緩焦慮而改善了REM睡眠。 總體來說,我們的結果顯示:REM睡眠減少是短暫壓力(例如:足電刺激)最主要造成的影響、壓力造成hcrt在MRN的釋放增加所以使θ波升高,且也抑制了REM睡眠、抑制θ波產生可以減緩焦慮、CBD透過CeA減緩焦慮而改善壓力引起的REM睡眠減少。 | zh_TW |
dc.description.abstract | Abstract
Stress impairs physical and mental health. Multi-factors, such as living environments, make investigators difficult to clarify how stress affects health. Thus this study utilized well-controlled environments and experimental animals (rats) to elucidate stress-induced behaviors and the related underlying mechanisms. We investigated the stress-related functions of a novel neurotransmitter, hypocretin (hcrt). Three main issues have been investigated in current dissertation, including: the stress-induced alteration of theta frequency in the electroencephalograms (EEGs), stress-induced sleep disturbances, and the mechanism of a potential anxiolytic, cannabidiol (CBD). Increased hcrt mediates stress-related responses. Theta frequency of EEGs is predominant during stress in rats. Hcrt receptors are abundant in the median raphe nucleus (MRN) which is a brain region desynchronizing hippocampal theta oscillation, suggesting a possible role of hcrt in modulating theta rhythm. First part of experiments clarified the involvement of hcrt in the stress-induced theta waves and the role of the MRN. Our results indicated that the intensity of theta waves was enhanced by the footshock and that TCS1102 (hcrt receptor antagonist) suppressed the footshock-induced theta waves. Administration of hcrt-1 (1 and 10 μg) and hcrt-2 (10 μg) directly into the MRN simulated the effect of footshock and increased theta waves. Co-administration of GABAA receptor antagonist, bicuculline, into the MRN blocked the increase of theta waves induced by hcrt or footshocks. Electrical stimulation of MRN also suppressed footshock-induced theta waves. We hypothesized that suppression of theta waves reduces anxiety. We exploited the elevated plus maze (EPM) to measure the anxiety level of subjects. After suppression of theta waves by either bicuculline or electrical stimulation, the duration in open arms increased. These results suggested that stress enhances the release of hcrts, activates GABAergic neurons in the MRN, blocks the ability of MRN to desynchronize theta waves, and subsequently increases the intensity of theta rhythm. Furthermore, stimulation of MRN blocked theta waves, which in turn reduced anxiety levels. The MRN modulates fear responses and also regulates sleep, but it is unclear whether stress-induced hcrts in the MRN disrupt sleep or not. Our data demonstrated that the footshock reduced rapid eye movement (REM) sleep and microinjection of TCS1102 into the MRN blocked the decrease of REM sleep in rats. Administration of hcrt-1 or hcrt-2 to the MRN mimicked the footshock-induced sleep alterations. Co-administration of bicuculline suppressed the decrease of REM sleep, induced either by footshock stimuli or administration of hcrts. These observations suggest that hcrt in the MRN is involved in the stress-induced reduction of REM sleep and this action is mediated by the GABAergic neurons in the MRN. CBD, an active component of marijuana, is reported to have the anxiolytic effect. Image studies showed that CBD decreases anxiety by activation of the amygdala. However, the ability of CBD to improve stress-induced sleep disturbances is unclear. We employed the repeated combination tests (RCT), consisting of a 50-minute open field (OF) and a subsequent 10-minute EPM, for four consecutive days to simulate the development of anxiety. Time spent in the centre arena of OF and during open arms of the EPM was substantially decreased in latter days of RCT, whereas microinjection of CBD into the amygdala blocked the reduction, further confirming its anxiolytic effect. The suppression of REM sleep during hours 4-10 were observed after the RCT. CBD efficiently blocked anxiety-induced suppression of REM sleep. In summary, our results have shown that REM sleep reduction is the main sleep disturbance induced by the acute stress, such as the inescapable footshock. Stress increases hcrt in the MRN which results in increase of theta rhythms and subsequently decreases REM sleep. Desynchronization of theta waves reduces the anxiety level of rats. Moreover, CBD in the amygdala reduces anxiety and reverses the REM sleep reduction induced by stressors. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:27:52Z (GMT). No. of bitstreams: 1 ntu-102-F96629006-1.pdf: 9764308 bytes, checksum: eb350db35ba39f6ee3062a171c151e35 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
中文摘要 i Abstract iv CHAPTER 1 1 GENERAL INTRODUCTION 1 1.1 Hcrt causes sleep disturbance after stressful experience 4 1.2 Hcrt contributes to the stress-induced theta generation 6 1.3 Treatments for anxiety disorders 6 1.3.1 Manipulation of theta waves interrupts brain functions 6 1.3.2 A potential anxiolytic: CBD 7 1.4 Specific Aims 8 CHAPTER 2 9 ACTIVATION OF GABAERGIC INDIRECT PATHWAY BY HYPOCRETIN IN THE MEDIAN RAPHE NUCLEUS (MRN) MEDIATES STRESS-INDUCED THETA RHYTHM IN RATS 9 2.1 ABSTRACT 9 2.2 INTRODUCTION 11 2.3 MATERIAL AND METHODS 14 2.3.1 Drugs 14 2.3.2 Animals and surgeries 14 2.3.3 Apparatus and recoding 16 2.3.4 Experimental protocols 17 2.3.5 Statistical analysis 18 2.4. RESULTS 19 2.4.1 The effects of IS stimuli on the theta power 19 2.4.2 The role of MRN hypocretin in the IS stimuli-induced enhancement of theta waves 20 2.4.3 Activation of GABAergic activity in the MRN modulates IS stimuli-induced enhancement of type-2 theta waves 21 2.4.4 Histological analysis of MRN lesion after multiple microinjections 22 2.5. DISCUSSION 40 2.6. CONCLUSIONS 44 CHAPTER 3 45 DISRUPTION OF FOOTSHOCK-INDUCED THETA RHYTHMS BY STIMULATING MEDIAN RAPHE NUCLEUS REDUCES ANXIETY IN RATS 45 3.1 ABSTRACT 45 3.2 INTRODUCTION 47 3.3 MATERIAL AND METHODS 50 3.3.1 Drugs 50 3.3.2 Animals and surgeries 50 3.3.3 Behavioral tests 53 3.3.4 Experimental protocols 54 3.3.5 Statistical analysis 55 3.4 RESULTS 56 3.4.1 Type-1 theta power increased when rats explored in the footshock box 56 3.4.2 Inescapable footshock stimuli enhanced the type-2 theta power 57 3.4.3 The effects of MRN stimulation and bicuculline administration 58 3.4.4 The results of EPM task 59 3.5 DISCUSSION 73 CHAPTER 4 79 HYPOCRETIN (OREXIN) IN THE MEDIAN RAPHE NUCLEUS MODULATE INESCAPABLE FOOTSHOCK-INDUCED SLEEP ALTERATIONS IN RATS 79 4.1 ABSTRACT 79 4.2 INTRODUCTION 81 4.3 MATERIAL AND METHODS 83 4.3.1 Substances 83 4.3.2 Animals 84 4.3.3 Surgery 84 4.3.4 Apparatus and recoding 85 4.3.5 Experimental protocol 87 4.3.6 Immunohistochemistry (IHC) 88 4.3.7 Statistical analysis 89 4.4 RESULTS 90 4.4.1 Sleep alterations after IS 90 4.4.2 TCS1102 reduced IS-induced sleep alterations 90 4.4.3 Microinjection of hcrt-1 and hcrt-2 suppressed REM sleep 92 4.4.4 Sleep architecture altered by hcrts 92 4.4.5 The IHC revealed hcrt-1 and hcrt-2 IR following IS 93 4.4.6 Histological analysis of MRN lesion after multiple microinjections 94 4.5 DISCUSSION 109 4.6 CONCLUTION 113 CHAPTER 5 114 GABAERGIC NEURONS IN THE MEDIAN RAPHE NUCLEUS (MRN) MODULATE FOOTSHOCK-INDUCED RAPID EYE MOVEMENT (REM) SLEEP DISTURBANCE IN RATS 114 5.1 ABSTRACT 114 5.2 INTRODUCTION 116 5.3 MATERIAL AND METHODS 117 5.3.1 Substances 117 5.3.2 Animals 118 5.3.3 Apparatus and Recoding 119 5.3.4 Experimental Protocol 121 5.4 RESULTS 122 5.4.1 The influence of IS on sleep 122 5.4.2 The effect of Bicuculline on post-IS sleep 123 5.4.3 The effects of microinjecting bicuculline+hcrt into the MRN 123 5.5 DISCUSSION 137 CHAPTER 6 140 EFFECT OF CANNABIDIOL ON SLEEP DISRUPTION INDUCED BY THE REPEATED COMBINATION TESTS CONSISTING OF OPEN FIELD AND ELEVATED PLUS-MAZE IN RATS 140 6.1 GRAPHICAL ABSTRACT 140 6.2. INTRODUCTION 143 6.3 MATERIALS AND METHODS 146 6.3.1 Substances 146 6.3.2 Animals 146 6.3.3 Apparatus and recording 148 6.3.4 Behavioral tests 149 6.3.5 Experimental procedures 151 6.3.6 Statistical analysis 153 6.4 RESULTS 154 6.4.1 Behavioral measures of the repeated combination tests (RCT) 154 6.4.2 Effects of CBD on repeated combination tests-induced behaviors 157 6.4.3 Sleep alterations induced after repetitive exposure to the combination tests 159 6.4.4 CBD blocked RCT-induced suppression of REM sleep 161 6.5. DISCUSSION 178 CHAPTER 7 187 DISCUSSION and CONCLUSIONS 187 REFERENCE 198 LIST OF ILLUSTRATIONS Figure 1. A diagram of experimental protocol. 23 Figure 2. The intensity of EEG spectra obtained from undisturbed baseline and PFS+IS stimuli. 25 Figure 3. The intensity of EEG spectra obtained from undisturbed baseline, 28 Figure 4. Summary for the alterations of delta, type-1 theta, type-2 theta, alpha, and beta powers after IS stimuli. 30 Figure 5. A: Summary for the alterations of type-2 theta power after microinjection of TCS1102. 32 Figure 6. Summary for the effects of bicuculline on the enhancement of type-2 theta power induced by IS stimuli and hcrts. 34 Figure 7. A: Left side: the histological slide of the median raphe nucleus (MRN). 36 Figure 8. A hypothetical diagram. 38 Figure 9. A diagram of experimental protocol. 61 Figure 10. Summary for the alterations of spectral powers after manipulations of MRN activity. 63 Figure 11. The intensity of EEG spectra obtained from undisturbed baseline and inescapable footshock. 65 Figure 12. The intensity of EEG spectra obtained from the baseline when rats were in their home cage and during footshock+100 Hz MRN stimulation. 67 Figure 13. Desynchronization of footshock-induced theta waves reduced anxiety in the EPM task. 69 Figure 14. Examples of tracing for the rat’s movement in the EPM. 71 Figure 15. The effects of IS on sleep alterations. 95 Figure 16. The influences of non-selective hcrtR antagonist (TCS1102) on IS-induced sleep alterations. 97 Figure 17. The effects of sleep patterns after administration of hcrt-1 in the MRN. 99 Figure 18. The effects of sleep patterns after administration of hcrt-2 in the MRN 101 Figure 19. The expression of hcrt neurons in the LHA after IS 103 Figure 20. A. The diagram for the experimental protocol. 105 Figure 21. The effects of footshock on sleep alterations. 125 Figure 22. The influences of GABAA receptor antagonist (bicuculline) on footshock-induced sleep alterations. 127 Figure 23. The effects of sleep patterns after administration of bicuculline+hcrt-1 in the MRN 129 Figure 24. The effects of sleep patterns after administration of bicuculline+hcrt-2 in the MRN 131 Figure 25. A summary diagram 133 Figure 26. A: The diagram for the experimental protocol. 163 Figure 27. The OF of RCT decreases the time spent during the centre arena and CBD increases rats’ exploration in the central arena 165 Figure 28. The effects of CBD on the time rats spend in the open arms 167 Figure 29. The level of anxiety determined by urination and defecation after exposing to the RCT. 169 Figure 30. The alterations of NREM sleep and REM sleep after the RCT 171 Figure 31. The effects of CBD on RCT-induced sleep alterations 173 Figure 32. The subcortical regions that control theta waves 193 Figure 33. The mechanism of subcortical regions that control theta waves, stress, and REM sleep 195 LIST OF TABLES Table 1. Effects of IS, DMSO, TCS1102+IS, hcrt-1 and hcrt-2 on the sleep-wake architecture parameters of rats. 107 Table 2. Effects of PFS, footshocks, bicuculline, bicuculline+footshock, bicuculline+hcrt-1 and bicuculline+hcrt-2 on the sleep-wake architecture parameters of rats. 135 Table 3. Parameters (immobilization time, total distance of movement, movement distance in the centre arena, and velocity in the centre arena) detected from the OF in three groups 175 Table 4. Effects of RCT, CBD and sleep deprivation on the sleep-wake architecture parameters of rats 177 | |
dc.language.iso | en | |
dc.title | Hypocretin與theta oscillations在壓力及壓力誘發之睡眠變化中所扮演的角色,以及Cannabidiol (CBD)對壓力引發睡眠失調之作用 | zh_TW |
dc.title | Roles of hypocretin, theta oscillations, and cannabidiol in stress and stress-induced sleep alterations | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 詹東榮(Tong-Rong Jan),簡伯武(Po-Wu Gean),黃玉書(Yu-Shu Huang),徐崇堯(Chung-Yao Hsu) | |
dc.subject.keyword | 壓力,睡眠,下丘泌素,大麻二酚,θ波,中縫核,杏仁核, | zh_TW |
dc.subject.keyword | stress,sleep,hypocretin,cannabidiol,theta,raphe nucleus,amygdala, | en |
dc.relation.page | 228 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-01-11 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
Appears in Collections: | 獸醫學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-102-1.pdf Restricted Access | 9.54 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.